Week 21 – HACA

“Mild Therapeutic Hypothermia to Improve the Neurologic Outcome After Cardiac Arrest”

by the Hypothermia After Cardiac Arrest Study Group

N Engl J Med. 2002 Feb 21;346(8):549-56. [free full text]

Neurologic injury after cardiac arrest is a significant source of morbidity and mortality. It is hypothesized that brain reperfusion injury (via the generation of free radicals and other inflammatory mediators) following ischemic time is the primary pathophysiologic basis. Animal models and limited human studies have demonstrated that patients treated with mild hypothermia following cardiac arrest have improved neurologic outcome. The 2002 HACA study sought to prospectively evaluate the utility of therapeutic hypothermia in reducing neurologic sequelae and mortality post-arrest.

Population: European patients who achieve return of spontaneous circulation after presenting to the ED in cardiac arrest

inclusion criteria: witnessed arrest, ventricular fibrillation or non-perfusing ventricular tachycardia as initial rhythm, estimated interval 5 to 15 min from collapse to first resuscitation attempt, no more than 60 min from collapse to ROSC, age 18-75

pertinent exclusion: pt already < 30ºC on admission, comatose state prior to arrest d/t CNS drugs, response to commands following ROSC

Intervention: Cooling to target temperature 32-34ºC with maintenance for 24 hrs followed by passive rewarming. Pts received pancuronium for neuromuscular blockade to prevent shivering.

Comparison: Standard intensive care


Primary: a “favorable neurologic outcome” at 6 months defined as Pittsburgh cerebral-performance scale category 1 (good recovery) or 2 (moderate disability). (Of note, the examiner was blinded to treatment group allocation.)

– all-cause mortality at 6 months
– specific complications within the first 7 days: bleeding “of any severity,” pneumonia, sepsis, pancreatitis, renal failure, pulmonary edema, seizures, arrhythmias, and pressure sores

3551 consecutive patients were assessed for enrollment and ultimately 275 met inclusion criteria and were randomized. The normothermia group had more baseline DM and CAD and were more likely to have received BLS from a bystander prior to the ED.

Regarding neurologic outcome at 6 months, 75 of 136 (55%) of the hypothermia group had a favorable neurologic outcome, versus 54/137 (39%) in the normothermia group (RR 1.40, 95% CI 1.08-1.81, p = 0.009; NNT = 6). After adjusting for all baseline characteristics, the RR increased slightly to 1.47 (95% CI 1.09-1.82).

Regarding death at 6 months, 41% of the hypothermia group had died, versus 55% of the normothermia group (RR 0.74, 95% CI 0.58-0.95, p = 0.02; NNT = 7). After adjusting for all baseline characteristics, RR = 0.62 (95% CI 0.36-0.95). There was no difference among the two groups in the rate of any complication or in the total number of complications during the first 7 days.

In ED patients with Vfib or pulseless VT arrest who did not have meaningful response to commands after ROSC, immediate therapeutic hypothermia reduced the rate of neurologic sequelae and mortality at 6 months.

Corresponding practice point from Dr. Sonti and Dr. Vinayak and their Georgetown Critical Care Top 40: “If after ROSC your patient remains unresponsive and does not have refractory hypoxemia/hypotension/coagulopathy, you should initiate therapeutic hypothermia even if the arrest was PEA. The benefit seen was substantial and any proposed biologic mechanism would seemingly apply to all causes of cardiac arrest. The investigators used pancuronium to prevent shivering; [at MGUH] there is a ‘shivering’ protocol in place and if refractory, paralytics can be used.”

This trial, as well as a concurrent publication by Benard et al., ushered in a new paradigm of therapeutic hypothermia or “targeted temperature management” (TTM) following cardiac arrest. Numerous trials in related populations and with modified interventions (e.g. target temperature 36º C) were performed over the following decade, and ultimately led to the current standard of practice.

Per UpToDate, the collective trial data suggest that “active control of the post-cardiac arrest patient’s core temperature, with a target between 32 and 36ºC, followed by active avoidance of fever, is the optimal strategy to promote patient survival.” TTM should be undertaken in all patients who do not follow commands or have purposeful movements following ROSC. Expert opinion at UpToDate recommends maintaining temperature control for at least 48 hours. There is no strict contraindication to TTM.

Further Reading/References:
1. 2 Minute Medicine
2. Wiki Journal Club
3. Georgetown Critical Care Top 40, page 23 (Jan. 2016)
4. PulmCCM.org, “Hypothermia did not help after out-of-hospital cardiac arrest, in largest study yet
5. Cochrane Review, “Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation”
6. The NNT, “Mild Therapeutic Hypothermia for Neuroprotection Following CPR”
7. UpToDate, “Post-cardiac arrest management in adults”

Summary by Duncan F. Moore, MD

Week 17 – PROSEVA

“Prone Positioning in Severe Acute Respiratory Distress Syndrome”

by the PROSEVA Study Group

N Engl J Med. 2013 June 6; 368(23):2159-2168 [free full text]

Prone positioning had been used for many years in ICU patients with ARDS in order to improve oxygenation. Per Dr. Sonti’s Georgetown Critical Care Top 40, the physiologic basis for benefit with proning lies in the idea that atelectatic regions of lung typically occur in the most dependent portion of an ARDS patient, with hyperinflation affecting the remaining lung. Periodic reversal of these regions via moving the patient from supine to prone and vice versa ensures no one region of the lung will have extended exposure to either atelectasis or overdistention. Although the oxygenation benefits have been long noted, the PROSEVA trial established mortality benefit.

Population:  Patients were selected from 26 ICUs in France and 1 in Spain which had daily practice with prone positioning for at least 5 years.

Inclusion: ARDS patients intubated and ventilated <36hr with severe ARDS (defined as PaO2:FiO2 ratio <150, PEEP>5, and TV of about 6ml/kg of predicted body weight)

(NB: by the Berlin definition for ARDS, severe ARDS is defined as PaO2:FiO2 ratio <100)

Intervention: Proning patients within 36 hours of mechanical ventilation for at least 16 consecutive hours (N=237)

Control: Leaving patients in a semirecumbent (supine) position (N=229)


Primary: mortality at day 28

Secondary: mortality at day 90, rate of successful (no reintubation or use of noninvasive ventilation x48hr) extubation, time to successful extubation, length of stay in the ICU, complications, use of noninvasive ventilation, tracheotomy rate, number of days free from organ dysfunction, ventilator settings, measurements of ABG, and respiratory system mechanics during the first week after randomization

At the time of randomization in the study, the majority of characteristics were similar between the two groups, although the authors noted differences in the SOFA score and the use of neuromuscular blockers and vasopressors. The supine group at baseline had a higher SOFA score indicating more severe organ failure, and also had higher rate of vasopressor usage. The prone group had a higher rate of usage of neuromuscular blockade.

The primary outcome of 28 day mortality was significantly lower in the prone group than in the supine group, at 16.0% vs 32.8% (P<0.001, NNT = 6.0). This mortality decrease was still statistically significant when adjusted for the SOFA score.

Secondary outcomes were notable for a significantly higher rate of successful extubation in the prone group (hazard ratio 0.45; 95% CI 0.29-0.7, P<0.001). Additionally, the PaO2:FiO2 ratio was significantly higher in the supine group, whereas the PEEP and FiO2 were significantly lower. The remainder of secondary outcomes were statistically similar.

PROSEVA showed a significant mortality benefit with early use of prone positioning in severe ARDS. This mortality benefit was considerably larger than seen in past meta-analyses, which was likely due to this study selecting specifically for patients with severe disease as well as specifying longer prone-positioning sessions than employed in prior studies. Critics have noted the unexpected difference in baseline characteristics between the two arms of the study. While these critiques are reasonable, the authors mitigate at least some of these complaints by adjusting the mortality for the statistically significant differences. With such a radical mortality benefit it might be surprising that more patients are not proned at our institution. One reason is that relatively few of our patients have severe ARDS. Additionally, proning places a high demand on resources and requires a coordinated effort of multiple staff. All treatment centers in this study had specially-trained staff that had been performing proning on a daily basis for at least 5 years, and thus were very familiar with the process. With this in mind, we consider the use of proning in patients meeting criteria for severe ARDS.

References and further reading:
1. 2 Minute Medicine
2. Wiki Journal Club
3. Georgetown Critical Care Top 40, pages 8-9
4. Life in the Fastlane, Critical Care Compendium, “Prone Position and Mechanical Ventilation”
5. PulmCCM.org, “ICU Physiology in 1000 Words: The Hemodynamics of Prone”

Summary by Gordon Pelegrin, MD

Week 15 – TRICC

“A Multicenter, Randomized, Controlled Clinical Trial of Transfusion Requirements in Critical Care”

N Engl J Med. 1999 Feb 11; 340(6): 409-417. [free full text]

Although intuitively a hemoglobin closer to normal physiologic concentration seems like it would be beneficial, the vast majority of the time in inpatient settings we use a hemoglobin concentration of >7g/dL as our threshold for transfusion in anemia. Historically, higher hemoglobin cutoffs were used, often aiming to keep Hgb >10g/dL. In 1999, the landmark TRICC trial was published showing no mortality benefit in the liberal transfusion strategy and even harm in certain subgroup analysis.


Inclusion: critically ill patients expected to be in ICU > 24h, Hgb ≤ 9g/dL within 72hr of ICU admission, and clinically euvolemic after fluid resuscitation

Exclusion criteria: age < 16, inability to receive blood products, active bleed, chronic anemia, pregnancy, brain death, consideration of withdrawal of care, and admission after routine cardiac procedure.

Intervention: liberal strategy (transfuse to Hgb goal 10-12g/dL, N=420)

Comparison: restrictive strategy (transfuse to Hgb goal 7-9g/dL, N=418)

Primary outcome: 30-day all-cause mortality

Secondary outcomes: 60-day all-cause mortality, mortality during hospital stay (ICU plus step-down), multiple-organ dysfunction score, change in organ dysfunction from baseline

Subgroup analyses: patients with APACHE II score ≤ 20 (i.e. less-ill patients), patients younger than 55, cardiac disease, severe infection/septic shock, and trauma

The primary outcome of 30-day mortality was similar between the two groups (18.7% vs. 23.3%, p = 0.11). Secondary outcomes of mortality rates during hospitalization were lower in the restrictive strategy (22.2% vs. 28.1%, p = 0.05). 60-day all-cause mortality trended towards lower in the restrictive strategy although did not reach statistical significance (22.7% vs. 26.5 %, p = 0.23). Between the two groups there was no significant difference in multiple-organ dysfunction score or change in organ dysfunction from baseline.

Subgroup analysis was most notable for finding statistically significant benefits for the restrictive strategy in the patients with APACHE II score ≤ 20 and patients younger than 55. In these patients, a restrictive strategy showed decrease in 30-day mortality and a lower multiple-organ dysfunction score. In the subgroups of primary disease process (i.e. cardiac disease, severe infection/septic shock, and trauma) there was no significant difference.

Complications in the ICU were monitored, and there was a significant increase in cardiac events (primarily pulmonary edema) in the liberal strategy compared to the restrictive strategy.

TRICC showed no difference in 30-day mortality between a restrictive and liberal transfusion strategy. Secondary outcomes were notable for a decrease in inpatient mortality with the restrictive strategy. Furthermore, subgroup analysis showed benefit in various metrics for a restrictive transfusion strategy when adjusting for younger and less-ill patients. This evidence laid the groundwork for our current standard of transfusing to hemoglobin >7g/dL. A restrictive strategy has also been supported by more recent studies. In 2014 the Transfusion Thresholds in Septic Shock (TRISS) study showed no change in 90-day mortality with a restrictive strategy. Additionally, in 2013 the Transfusion Strategy for Acute Upper Gastrointestinal Bleeding study showed reduced 40-day mortality in the restrictive strategy. However, it excluded patients who had massive exsanguination or low rebleeding risk, thus making it difficult to generalize to our patient population. Currently, the Surviving Sepsis Campaign endorses only transfusing RBCs when Hgb <7g/dL unless there are extenuating circumstances such as MI, severe hypoxemia, or active hemorrhage.

References and Further reading:
1. TRISS @ Wiki Journal Club, full text, Georgetown Critical Care Top 40 pages 14-15
2. Transfusion strategy for acute upper gastrointestinal bleeding @ Wiki Journal Club, full text
3. “Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2016”
4. Wiki Journal Club

Summary by Gordon Pelegrin, MD

Week 14 – ARDSNet aka ARMA

“Ventilation with Lower Tidal Volumes as Compared with Traditional Tidal Volumes for Acute Lung Injury and the Acute Respiratory Distress Syndrome”

by the Acute Respiratory Distress Syndrome Network (ARDSNet)

N Engl J Med. 2000 May 4;342(18):1301-8. [free full text]

Acute respiratory distress syndrome (ARDS) is an inflammatory and highly morbid lung injury found in many critically ill patients. In the 1990s, it was hypothesized that overdistention of aerated lung volumes and elevated airway pressures might contribute to the severity of ARDS, and indeed some work in animal models supported this theory. Prior to the ARDSNet study, four randomized trials had been conducted investigating the possible protective effect of ventilation with lower tidal volumes, but their results were conflicting.

Population: patients with ARDS diagnosed within < 36 hrs
Intervention: initial tidal volume 6 ml/kg predicted body weight, downtitrated as necessary to maintain plateau pressure ≤ 30 cm of water
Comparison: initial tidal volume 12 ml/kg predicted body weight, downtitrated as necessary to maintain plateau pressure ≤ 50 cm of water


1) in-hospital mortality
2) ventilator-free days within the first 28 days

1) number of days without organ failure
2) occurrence of barotrauma
3) reduction in IL-6 concentration from day 0 to day 3


861 patients were randomized before the trial was stopped early due to the increased mortality in the control arm noted during interim analysis. In-hospital mortality was 31.0% in the lower tidal volume group and 39.8% in the traditional tidal volume group (p = 0.007, NNT = 11.4). Ventilator free days were 12±11 in the lower tidal volume group vs. 10±11 in the traditional group (n = 0.007). The lower tidal volume group had more days without organ failure (15±11 vs. 12±11, p = 0.006). There was no difference in rates of barotrauma among the two groups. IL-6 concentration decrease between days 0 and 3 was greater in the low tidal volume group (p < 0.001), and IL-6 concentration at day 3 was lower in the low tidal volume group (p = 0.002).

Low tidal volume ventilation decreases mortality in ARDS relative to “traditional” tidal volumes.

The authors felt that this study confirmed the results of prior animal models and conclusively answered the question of whether or not low tidal volume ventilation provided a mortality benefit. In fact, in the years following, low tidal volume ventilation became the standard of care, and a robust body of literature followed this study to further delineate a “lung protective strategy.”

Critics of the study noted that at the time of the study the standard of care/“traditional” tidal volume in ARDS was less than the 12 ml/kg used in the comparison arm. (Non-enrolled patients at the participating centers were receiving a mean tidal volume of 10.3 ml/kg.) Thus not only was the trial making a comparison to a faulty control, but it was also potentially harming patients in the control arm. Here is an excellent summary of the ethical issues and debate regarding this specific issue and regarding control arms of RCTs in general.

Corresponding practice point from Dr. Sonti and Dr. Vinayak and their Georgetown Critical Care Top 40: “Low tidal volume ventilation is the standard of care in patients with ARDS (P/F < 300). Use ≤ 6 ml/kg predicted body weight, follow plateau pressures, and be cautious of mixed modes in which you set a tidal volume but the ventilator can adjust and choose a larger one.”

PulmCCM is an excellent blog, and they have a nice page reviewing this topic and summarizing some of the research and guidelines that have followed.

Further Reading/References:
1. Wiki Journal Club
2. 2 Minute Medicine
3. PulmCCM “Mechanical Ventilation in ARDS: Research Update”
4. Georgetown Critical Care Top 40, page 6

Summary by Duncan F. Moore, MD


“Hydrocortisone Therapy for Patients with Septic Shock”

N Engl J Med. 2008 Jan 10;358(2):111-24. [free full text]

Steroid therapy in septic shock has been a hotly debated topic since the 1980s. The Annane trial in 2002 suggested that there was a mortality benefit to early steroid therapy and so for almost a decade this became standard of care. In 2008 the CORTICUS trial was performed suggesting otherwise.

– inclusion criteria: ICU patients with septic shock onset with past 72 hrs (defined as SBP < 90 despite fluids or need for vasopressors, and hypoperfusion or organ dysfunction from sepsis)
– exclusion criteria: “underlying disease with a poor prognosis,” life expectancy < 24hrs, immunosuppression, recent corticosteroid use

Intervention: hydrocortisone 50mg IV q6h x5 days with taper

Comparison: placebo injections q6h x5 days plus taper


Primary: 28 day mortality among patients who did not have a response to ACTH stim test (cortisol rise < 9mcg/dL)

– 28 day mortality in patients who had a positive response to ACTH stim test
– 28 day mortality in all patients
– reversal of shock (defined as SBP ≥ 90 for at least 24hrs without vasopressors) in all patients
– time to reversal of shock in all patients

In ACTH non-responders (N=233): intervention vs. control 28 day mortality was 39.2% vs. 36.1% (p=0.69)

In ACTH responders (N=254): intervention vs. control 28 day mortality was 28.8% vs. 28.7% (p=1.00); reversal of shock 84.7%% vs. 76.5% (p=0.13)

Among all patients:
– intervention vs. control 28 day mortality was 34.3% vs. 31.5% (p=0.51)
– reversal of shock 79.7% vs. 74.2% (p=0.18)
– duration of time to reversal of shock was significantly shorter among patients receiving hydrocortisone (per Kaplan-Meier analysis, p<0.001; see Figure 2), median time to reversal 3.3 days vs. 5.8 days (95% CI 5.2 – 6.9)

The CORTICUS trial demonstrated no mortality benefit of steroid therapy in septic shock, regardless of a patient’s response to ACTH. Despite the lack of mortality benefit, it demonstrated an earlier resolution of shock with steroids. This lack of mortality benefit sharply contrasted with the previous Annane study. Several reasons have been posited for this including poor powering of the CORTICUS study (it did not reach the desired N=800), CORTICUS inclusion starting within 72 hrs of septic shock vs. Annane starting within 8 hrs, and Annane patients generally being sicker (including their inclusion criterion of mechanical ventilation). Subsequent meta-analyses disagree about the mortality benefit of steroids, but meta-regression analyses suggest benefit among the sickest patients. All studies agree about the improvement in shock reversal. The 2016 Surviving Sepsis Campaign guidelines recommend IV hydrocortisone in septic shock in patients who continue to be hemodynamically unstable despite adequate fluid resuscitation and vasopressor therapy.

Per Drs. Sonti and Vinayak of the GUH MICU (excerpted from their excellent Georgetown Critical Care Top 40): “Practically, we use steroids when reaching for a second pressor or if there is multiorgan system dysfunction. Our liver patients may have deficient cortisol production due to inadequate precursor lipid production; use of corticosteroids in these patients represents physiologic replacement rather than adjunct supplement.”

References / Further Reading
1. Wiki Journal Club
2. 2 Minute Medicine
3. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock (2016), section “Corticosteroids”
4. Annane trial (2002) [free full text]
5. Georgetown Critical Care Top 40 [iTunes / iBooks link]
6. UpToDate,“Glucocorticoid therapy in septic shock”

Summary by Gordon Pelegrin, MD

Week 5 – Albumin in SBP

“Effect of Intravenous Albumin on Renal Impairment and Mortality in Patients with Cirrhosis and Spontaneous Bacterial Peritonitis”

N Engl J Med. 1999 Aug 5;341(6):403-9. [free full text]

Renal failure commonly develops in the setting of SBP, and its development is a sensitive predictor of in-hospital mortality. The renal impairment is thought to stem from decreased effective arterial blood volume secondary to the systemic inflammatory response to the infection. In our current practice, there are certain circumstances in which we administer albumin early in the SBP disease course in order to reduce the risk of renal failure and mortality. Ultimately, our current protocol originated from the 1999 study of albumin in SBP by Sort et al.

Population: adults with SBP (see paper for extensive list of exclusion criteria)
Intervention: cefotaxime and albumin infusion 1.5gm/kg within 6hrs of enrollment, followed by 1gm/kg on day 3
Comparison: cefotaxime alone
1º: development of “renal impairment” (a “nonreversible” increase in BUN or Cr by more than 50% to a value greater than 30 mg/dL or 1.5 mg/dL, respectively) during hospitalization
2º: mortality during hospitalization

126 patients were randomized. Both groups had similar baseline characteristics, and both had similar rates of resolution of infection. Renal impairment occurred in 10% of the albumin group and 33% of the cefotaxime-alone group (p=0.02). In-hospital mortality was 10% in the albumin group and 29% in the cefotaxime-alone group (p=0.01). 78% of patients that developed renal impairment died in-hospital, while only 3% of patients who did not develop renal impairment died. Plasma renin activity was significantly higher on days 3, 6, and 9 in the cefotaxime-alone group than in the albumin group, while there were no significant differences in MAP among the two groups at those time intervals. Multivariate analysis of all trial participants revealed that baseline serum bilirubin and creatinine were independent predictors of the development of renal impairment.

Albumin administration reduces renal impairment and improves mortality in patients with SBP.

The findings of this landmark trial were refined by a brief 2007 report by Sigal et al. “Restricted use of albumin for spontaneous bacterial peritonitis.” “High-risk” patients, identified by baseline serum bilirubin of ≥ 4.0 mg/dL or Cr ≥ 1.0 mg/dL were given the intervention of albumin 1.5gm/kg on day 1 and 1gm/kg on day 3, and low-risk patients were not given albumin. None of the 15 low-risk patients developed renal impairment or died, whereas 12 of 21 (57%) of the high-risk group developed renal impairment, and 5 of the 21 (24%) died. The authors concluded that patients with bilirubin < 4.0 and Cr < 1.0 do not need scheduled albumin in the treatment of SBP.

The current (2012) American Association for the Study of Liver Diseases guidelines for the management of adult patients with ascites due to cirrhosis do not definitively recommend criteria for albumin administration in SBP – they instead summarize the above two studies.

A 2013 meta-analysis of four reports/trials (including the two above) concluded that albumin infusion reduced renal impairment and improved mortality with pooled odds ratios approximately commensurate with those of the 1999 study by Sort et al.

Ultimately, the current recommended practice per expert opinion is to perform albumin administration per the protocol outlined by Sigal et al. (2007).

Further Reading:
1. AASLD Guidelines for Management of Adult Patients with Ascites Due to Cirrhosis (skip to page 77)
2. Sigal et al. “Restricted use of albumin for spontaneous bacterial peritonitis”
3. Meta-analysis: “Albumin infusion improves outcomes of patients with spontaneous bacterial peritonitis: a meta-analysis of randomized trials
4. Wiki Journal Club
5. 2 Minute Medicine

Summary by Duncan F. Moore, MD

Week 3 – Dexamethasone in Bacterial Meningitis

“Dexamethasone in Adults With Bacterial Meningitis”

N Engl J Med 2002; 347:1549-1556 [NEJM free full text]

The current standard of care in the treatment of suspected bacterial meningitis in the developed world includes the administration of dexamethasone prior to or at the time of antibiotic initiation. The initial evaluation of this practice in part stemmed from animal studies which demonstrated that dexamethasone reduces CSF concentrations of inflammatory markers as well as neurologic sequelae after meningitis. RCTs in the pediatric literature also demonstrated clinical benefit. The best prospective trial in adults was this 2002 study by de Gans et al.

Population: adults with suspected meningitis

Intervention: dexamethasone 10mg IV q6hrs x4 days started 15-20 minutes before first IV abx

Comparison: placebo IV with same administration as above

primary = Glasgow Outcome Scale at 8 weeks (1 = death, 2 = vegetative state, 3 = unable to live independently, 4 = unable to return to school/work, 5 = able to return to school/work)
secondary = death, focal neurologic abnormalities, and others
subgroup analyses performed by organism

301 patients were randomized. At 8 weeks, 15% of dexamethasone patients had an unfavorable outcome (Glasgow Outcome Scale score of 1-4), vs. 25% of placebo patients (RR 0.59, 95% CI 0.37 – 0.94, p= 0.03). Among patients with pneumococcal meningitis, 26% of dexamethasone patients had an unfavorable outcome, vs. 52% of placebo patients. There was no significant difference among treatment arms within the subgroup of patients infected with meningococcal meningitis. Overall, death occurred in 7% of dexamethasone patients and 15% of placebo patients (RR 0.48, 95% CI 0.24 – 0.96, p = 0.04). In pneumococcal meningitis, 14% of dexamethasone patients died, vs. 34% of placebo patients. There was no difference in rates of focal neurologic abnormalities or hearing loss in either treatment arm (including within any subgroup).

Early adjunctive dexamethasone improves mortality in bacterial meningitis.

As noted in the above subgroup analysis, this benefit appears to be driven by the efficacy within the pneumococcal meningitis subgroup. Of note, the standard initial treatment regimen in this study was amoxicillin 2gm q4hrs for 7-10 days, not our standard ceftriaxone + vancomycin +/- ampicillin. Largely on the basis of this study alone, the IDSA guidelines for the treatment of bacterial meningitis (2004) recommend dexamethasone 0.15 mg/kg q6hrs for 2-4 days with first dose administered 10-20 min before or concomitant with initiation of antibiotics. Dexamethasone should be continued only if CSF Gram stain, CSF culture, or blood cultures are consistent with pneumococcus.

Further Reading:
1. IDSA guidelines for management of bacterial meningitis (2004)
2. Wiki Journal Club
3. 2 Minute Medicine

Summary by Duncan F. Moore, MD


“Intensive versus Conventional Glucose Control in Critically Ill Patients”

by the Normoglycemia in Intensive Care Evaluation–Survival Using Glucose Algorithm Regulation (NICE-SUGAR) investigators

N Engl J Med 2009; 360:1283-1297. [NEJM free full text]

On the wards we often hear 180 mg/dL used as the upper limit of acceptable for blood glucose, with the understanding that tighter glucose control in inpatients can lead to more harm than benefit. Interestingly, the relevant evidence base comes from ICU populations, with scant direct data in non-ICU patients. The 2009 NICE-SUGAR study is the largest and best among this evidence base.

Population: ICU patients expected to require 3 or more days of ICU-level care
Intervention: “intensive” glucose control = target glucose 81 to 108 mg/dL
Comparison: conventional glucose control = target of less than 180 mg/dL
Outcome: primary = 90-day all-cause mortality rate

6104 patients were randomized to the two arms, and both groups had similar baseline characteristics. 27.5% of patients in the intensive-control group died versus 24.9% in the conventional-control group (OR 1.14, 95% CI 1.02-1.28, p= 0.02). Severe hypoglycemia (< 40 mg/dL) was found in 6.8% of intensive patients but only 0.5% of conventional patients.

Intensive glucose control increases mortality in ICU patients.

Notably, only 20% of these patients had diabetes mellitus, suggesting that much of the hyperglycemia treated in this study (97% of intensive group received insulin, 69% of conventional) was from stress, critical illness, and corticosteroid use. For ICU patients, intensive insulin therapy is clearly harmful, but the ideal target glucose range remains controversial and by expert opinion appears to be 140-180. For non-ICU inpatients with or without diabetes mellitus, the ideal glucose target is also unclear – the ADA recommends 140-180, and the Endocrine Society recommends a pre-meal target of < 140 and random levels < 180.

Further reading:
1. ADA Standards of Medical Care in Diabetes 2016 (skip to page S99)
2. Wiki Journal Club

Summary by Duncan F. Moore, MD