Week 15 – COPERNICUS

“Effect of carvedilol on survival in severe chronic heart failure”

by the Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) Study Group

N Engl J Med. 2001 May 31;344(22):1651-8. [free full text]

We are all familiar with the role of beta-blockers in the management of heart failure with reduced ejection fraction. In the late 1990s, a growing body of excellent RCTs demonstrated that metoprolol succinate, bisoprolol, and carvedilol improved morbidity and mortality in patients with mild to moderate HFrEF. However, the only trial of beta-blockade (with bucindolol) in patients with severe HFrEF failed to demonstrate a mortality benefit. In 2001, the COPERNICUS trial further elucidated the mortality benefit of carvedilol in patients with severe HFrEF.

The study enrolled patients with severe CHF (NYHA class III-IV symptoms and LVEF < 25%) despite “appropriate conventional therapy” and randomized them to treatment with carvedilol with protocolized uptitration (in addition to pt’s usual meds) or placebo with protocolized uptitration (in addition to pt’s usual meds). The major outcomes measured were all-cause mortality and the combined risk of death or hospitalization for any cause.

2289 patients were randomized before the trial was stopped early due to higher than expected survival benefit in the carvedilol arm. Mean follow-up was 10.4 months. Regarding mortality, 190 (16.8%) of placebo patients died, while only 130 (11.2%) of carvedilol patients died (p = 0.0014) (NNT = 17.9). Regarding mortality or hospitalization, 507 (44.7%) of placebo patients died or were hospitalized, but only 425 (36.8%) of carvedilol patients died or were hospitalized (NNT = 12.6). Both outcomes were found to be of similar directions and magnitudes in subgroup analyses (age, sex, LVEF < 20% or >20%, ischemic vs. non-ischemic CHF, study site location, and no CHF hospitalization within year preceding randomization).

Implication/Discussion:
In severe HFrEF, carvedilol significantly reduces mortality and hospitalization risk.

This was a straightforward, well-designed, double-blind RCT with a compelling conclusion. In addition, the dropout rate was higher in the placebo arm than the carvedilol arm! Despite longstanding clinician fears that beta-blockade would be ineffective or even harmful in patients with already advanced (but compensated) HFrEF, this trial definitively established the role for beta-blockade in such patients.

Per the 2013 ACCF/AHA guidelines, “use of one of the three beta blockers proven to reduce mortality (e.g. bisoprolol, carvedilol, and sustained-release metoprolol succinate) is recommended for all patients with current or prior symptoms of HFrEF, unless contraindicated.”

Please note that there are two COPERNICUS trials. This is the first reported study (NEJM 2001) which reports only the mortality and mortality + hospitalization results, again in the context of a highly anticipated trial that was terminated early due to mortality benefit. A year later, the full results were published in Circulation, which described findings such as a decreased number of hospitalizations, fewer total hospitalization days, fewer days hospitalized for CHF, improved subjective scores, and fewer serious adverse events (e.g. sudden death, cardiogenic shock, VT) in the carvedilol arm.

Further Reading/References:
1. 2013 ACCF/AHA Guideline for the Management of Heart Failure
2. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure
3. COPERNICUS, 2002 Circulation version
4. Wiki Journal Club (describes 2001 NEJM, cites 2002 Circulation)
5. 2 Minute Medicine (describes and cites 2002 Circulation)

Summary by Duncan F. Moore, MD

Week 12 – SOLVD

“Effect of Enalapril on Survival in Patients with Reduced Left Ventricular Ejection Fractions and Congestive Heart Failure”

by the Studies of Left Ventricular Dysfunction (SOLVD) Investigators

N Engl J Med. 1991 Aug 1;325(5):293-302. [free full text]

Heart failure with reduced ejection fraction (HFrEF) is a very common and highly morbid condition. We now know that blockade of the renin-angiotensin-aldosterone system (RAAS) with an ACEi or ARB is a cornerstone of modern HFrEF treatment. The 1991 SOLVD trial played an integral part in demonstrating the benefit of and broadening the indication for RAAS blockade in HFrEF.

The trial enrolled patients with HFrEF and LVEF ≤ 35% who were already on treatment (but not on an ACEi) and had Cr ≤ 2.0 and randomized them to treatment with enalapril BID (starting at 2.5mg and uptitrated as tolerated to 20mg BID) or treatment with placebo BID (again, starting at 2.5mg and uptitrated as tolerated to 20mg BID). Of note, there was a single-blind run-in period with enalapril in all patients, followed by a single-blind placebo run-in period. Finally, the patient was randomized to his/her actual study drug in a double-blind fashion. The primary outcomes were all-cause mortality and death from or hospitalization for CHF. Secondary outcomes included hospitalization for CHF, all-cause hospitalization, cardiovascular mortality, and CHF-related mortality.

2569 patients were randomized. Follow-up duration ranged from 22 to 55 months. 510 (39.7%) placebo patients died during follow-up compared to 452 (35.2%) enalapril patients (relative risk reduction of 16% per log-rank test, 95% CI 5-26%, p = 0.0036). See Figure 1 for the relevant Kaplan-Meier curves. 736 (57.3%) placebo patients died or were hospitalized for CHF during follow-up compared to 613 (47.7%) enalapril patients (relative risk reduction 26%, 95% CI 18-34, p < 0.0001). Hospitalizations for heart failure, all-cause hospitalizations, cardiovascular deaths, and deaths due to heart failure were all significantly reduced in the enalapril group. 320 placebo patients discontinued the study drug versus only 182 patients in the enalapril group. Enalapril patients were significantly more likely to report dizziness, fainting, and cough. There was no difference in the prevalence of angioedema.

Treatment of HFrEF with enalapril significantly reduced mortality and hospitalizations for heart failure. The authors note that for every 1000 study patients treated with enalapril, approximately 50 premature deaths and 350 heart failure hospitalizations were averted. The mortality benefit of enalapril appears to be immediate and increases for approximately 24 months. Per the authors, “reductions in deaths and rates of hospitalization from worsening heart failure may be related to improvements in ejection fraction and exercise capacity, to a decrease in signs and symptoms of congestion, and also to the known mechanism of action of the agent – i.e., a decrease in preload and afterload when the conversion of angiotensin I to angiotensin II is blocked.” Strengths of this study include its double-blind, randomized design, large sample size, and long follow-up. The fact that the run-in period allowed for the exclusion prior to randomization of patients who did not immediately tolerate enalapril is a major limitation of this study.

Prior to SOLVD, studies of ACEi in HFrEF had focused on patients with severe symptoms. The 1987 CONSENSUS trial was limited to patients with NYHA class IV symptoms. SOLVD broadened the indication of ACEi treatment to a wider group of symptoms and correlating EFs. Per the current 2013 ACCF/AHA guidelines for the management of heart failure, ACEi/ARB therapy is a Class I recommendation in all patients with HFrEF in order to reduce morbidity and mortality.

Further Reading/References:
1. Wiki Journal Club
2. 2 Minute Medicine
3. Effects of enalapril on mortality in severe congestive heart failure – Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). 1987.
4. 2013 ACCF/AHA guideline for the management of heart failure: executive summary

Summary by Duncan F. Moore, MD

Week 8 – 4S

“Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S)”

Lancet. 1994 Nov 19;344(8934):1383-9 [free full text]

Statins are an integral part of modern primary and secondary prevention of atherosclerotic cardiovascular disease (ASCVD). Hypercholesterolemia is regarded as a major contributory factor to the development of atherosclerosis, and in the 1980s, a handful of clinical trials demonstrated reduction in MI/CAD incidence with cholesterol-lowering agents, such as cholestyramine and gemfibrozil. However, neither drug demonstrated a mortality benefit. By the late 1980s, there was much hope that the emerging drug class of HMG-CoA reductase inhibitors (statins) would confer a mortality benefit, given their previously demonstrated LDL-lowering effects. The 1994 Scandinavian Simvastatin Survival Study was the first large clinical trial to assess this hypothesis.

4444 adults ages 35-70 with a history of angina pectoris or MI and elevated serum total cholesterol (212 – 309 mg/dL) were recruited from 94 clinical centers in Scandinavia (and in Finland, which is technically a Nordic country but not a Scandinavian country…) and randomized to treatment with either simvastatin 20mg PO qPM or placebo. Dosage was increased at 12 weeks and 6 months to target a serum total cholesterol of 124 to 201 mg/dL. (Placebo patients were randomly uptitrated as well.) The primary endpoint was all-cause mortality. The secondary endpoint was time to first “major coronary event,” which included coronary deaths, nonfatal MI, resuscitated cardiac arrest, and definite silent MI per EKG.

The study was stopped early in 1994 after an interim analysis demonstrated a significant survival benefit in the treatment arm. At a mean 5.4 years of follow-up, 256 (12%) in the placebo group versus 182 (8%) in the simvastatin group had died (RR 0.70, 95% CI 0.58-0.85, p=0.0003, NNT = 30.1). The mortality benefit was driven exclusively by a reduction in coronary deaths. Dropout rates were similar (13% of placebo group and 10% of simvastatin group). The secondary endpoint, occurrence of a major coronary event, occurred in 622 (28%) of the placebo group and 431 (19%) of the simvastatin group (RR 0.66, 95% CI 0.59-0.75, p < 0.00001). Subgroup analyses of women and patients aged 60+ demonstrated similar findings for the primary and secondary outcomes. Over the entire course of the study, the average changes in lipid values from baseline in the simvastatin group were -25% total cholesterol, -35% LDL, +8% HDL, and -10% triglycerides. The corresponding percent changes from baseline in the placebo group were +1%, +1%, +1%, and +7%, respectively.

In conclusion, simvastatin therapy reduced mortality in patients with known CAD and hypercholesterolemia via reduction of major coronary events. This was a large, well-designed, double-blind RCT that ushered in the era of widespread statin use for secondary, and eventually, primary prevention of ASCVD. For further information about modern guidelines for the use of statins, please see the 2018 “ACC/AHA Multisociety Guideline on the Management of Blood Cholesterol” and the 2016 USPSTF guideline “Statin use for the Primary Prevention of Cardiovascular Disease in Adults: Preventive Medication”.

Finally, for history buffs interested in a brief history of the discovery and development of this drug class, please see this paper by Akira Endo.

References / Additional Reading:
1. 4S @ Wiki JournalClub
2. “2018 ACC/AHA Multisociety Guideline on the Management of Blood Cholesterol”
3. “Statin use for the Primary Prevention of Cardiovascular Disease in Adults: Preventive Medication” (2016)
4. UpToDate, “Society guideline links: Lipid disorders in adults”
5. “A historical perspective on the discovery of statins” (2010)

Summary by Duncan F. Moore, MD

Image Credit: Siol, CC BY-SA 3.0, via Wikimedia Commons

Week 2 – CAST

“Mortality and Morbidity in Patients Receiving Encainide, Flecainide, or Placebo”

The Cardiac Arrhythmia Suppression Trial (CAST)

N Engl J Med. 1991 Mar 21;324(12):781-8. [full text]

Ventricular arrhythmias are common following MI, and studies have demonstrated that PVCs and other arrhythmias such as non-sustained ventricular tachycardia (NSVT) are independent risk factors for cardiac mortality following MI. As such, by the late 1980s, many patients with PVCs post-MI were treated with antiarrhythmic drugs in an attempt to reduce mortality. The 1991 CAST trial sought to prove what predecessor trials had failed to prove – that suppression of such rhythms post-MI would improve survival.

This trial took post-MI patients with PVCs (with no sustained VT) and reduced EF and randomized them to an open-label titration period in which encainide, flecainide, or moricizine was titrated to suppress at least 80% of the PVCs and 90% of the runs of NSVT. Patients were then either randomized to continuation of the antiarrhythmic drug assigned during the titration period or transitioned to a placebo. The primary outcome was death or cardiac arrest with resuscitation, “either of which was due to arrhythmia.”

The trial was terminated early due to increased mortality in the encainide and flecainide treatment groups. 1498 patients were randomized following successful titration during the open-label period, and they were reported in this paper. The results of the moricizine arm were reported later in a different paper (CAST-II). The RR of death or cardiac arrest due to arrhythmia was 2.64 (95% CI 1.60–4.36; number needed to harm = 28.2). See Figure 1 on page 783 for a striking Kaplan-Meier curve. The RR of death or cardiac arrest due to all causes was 2.38 (95% CI 1.59–3.57; NNH = 20.6). Regarding other secondary outcomes, cardiac death/arrest due to any cardiac cause was similarly elevated in the treatment group, and there were no significant differences in non-lethal endpoints among the treatment and placebo arms.

In this large RCT, the treatment of asymptomatic ventricular arrhythmias with encainide and flecainide in patients with LV dysfunction following MI resulted in increased mortality. This study provides a classic example of how a treatment that seems to make intuitive sense based on observational data can be easily and definitively disproven with a placebo-controlled trial with hard endpoints (e.g. death). Although PVCs and NSVT are associated with cardiac death post-MI and reducing these arrhythmias might seem like an intuitive strategy for reducing death, correlation does not equal causation. Modern expert opinion at UpToDate notes no role for suppression of asymptomatic PVCs or NSVT in the peri-infarct period. Indeed such suppression may increase mortality. As noted on Wiki Journal Club, modern ACC/AHA guidelines “do not comment on the use of antiarrhythmic medications in ACS care.”

Further Reading/References:
1. CAST @ Wiki Journal Club
2. CAST @ 2 Minute Medicine
3. CAST-I Trial @ ClinicalTrials.gov
4. CAST-II trial publication, NEJM 1992
5. UpToDate “Clinical features and treatment of ventricular arrhythmias during acute myocardial infarction”

Summary by Duncan F. Moore, MD

Week 49 – PARADIGM-HF

“Angiotensin-Neprilysin Inhibition versus Enalapril in Heart Failure”

N Engl J Med. 2014 Sep 11;371(11):993-1004. [free full text]


Background:
Thanks to the CONSENSUS and SOLVD trials, angiotensin-converting enzyme (ACE) inhibitors have been a cornerstone of the treatment of heart failure with reduced ejection fraction (HFrEF) for years. Neprilysin is a neutral endopeptidase that degrades several peptides, including natriuretic peptides, bradykinin, and adrenomedullin. Inhibiting neprilysin increases levels of these substances and thus counteracts the neurohormonal overactivation of heart failure (which would otherwise lead to vasoconstriction, sodium retention, and maladaptive remodeling). Prior experimental data has demonstrated that, in terms of cardiovascular outcomes, neprilysin inhibition with an ARB is superior to ARB monotherapy. However, a clinical trial of concurrent neprilysin-inhibitor and ACE inhibitor therapy resulted in unacceptably high rates of serious angioedema. This study sought to show improved cardiac and mortality outcomes with neprilysin inhibition plus an ARB when compared to enalapril alone.

The study enrolled adults with NYHA class II, III, or IV heart failure, LVEF ≤ 35%, and BNP ≥ 150 or NT-proBNP ≥600. Pertinent exclusion criteria included symptomatic hypotension, SBP < 100mmHg at screening or 95mmHg at randomization, eGFR < 30 or decrease in eGFR by 25% between screening and randomization, K+ > 5.2, or history of angioedema/side effects to ACE inhibition or ARBs. Patients were randomized to treatment with either sacubitril/valsartan 200mg BID or to enalapril 10mg BID. (Screened patients were initially given sacubitril/valsartan followed by enalapril in single blinded run-in phases in order to ensure similar tolerance of the drugs prior to randomization.) The primary outcome was a composite of death from cardiovascular causes or first hospitalization for heart failure. Selected secondary outcomes included: 1) change from baseline in the clinical summary score of the Kansas City Cardiomyopathy Questionnaire (KCCQ), 2) time to new-onset atrial fibrillation, and 3) time to first occurrence of decline in renal function.

 

Results:
4187 patients were randomized to the sacubitril/valsartan group, and 4212 were randomized to the enalapril group.

The primary endpoint (composite death due to cardiovascular causes or first hospitalization for HF) occurred in 914 patients (21.8%) in the sacubitril/valsartan group and 1117 patients (26.5%) in the enalapril group (p < 0.001; NNT = 21). Death due to cardiovascular causes occurred 558 times in the sacubitril/valsartan group and 693 times in the enalapril group (13.3% vs. 16.5%, p < 0.001; NNT = 31). Hospitalization for heart failure occurred (at least once) 537 times in the sacubitril/valsartan group and 658 times in the enalapril group (12.8% vs. 15.6%, p < 0.001; NNT = 36).

Regarding secondary outcomes, the mean change in KCCQ score was a reduction of 2.99 points (i.e. a worsening of symptoms) in the sacubitril/valsartan group versus a reduction of 4.63 points in the enalapril group (p = 0.001). There was no significant group difference in time to new-onset atrial fibrillation or time to diminished renal function.

Regarding safety outcomes, patients in the sacubitril/valsartan group were more likely to have symptomatic hypotension compared to patients in the enalapril group (14.0% vs. 9.2%; p < 0.001; NNH = 21). However, patients in the enalapril group were more likely to have cough, serum creatinine ≥ 2.5, or potassium ≥6.0 compared to sacubitril/valsartan (p value varies, all significant). There was no group difference in rates of angioedema (p = 0.13).

Implication/Discussion:
In patients with HFrEF, inhibition of both angiotensin II and neprilysin with sacubitril/valsartan significantly reduced the risk of cardiovascular death or hospitalization for heart failure when compared to treatment with enalapril alone.

This study had several strengths. The treatment with sacubitril/valsartan was compared to treatment with a dose of enalapril that had previously been shown to reduce mortality when compared with placebo. Furthermore, the study used a run-in phase to ensure that patients could tolerate an enalapril dose that had previously been shown to reduce mortality. Finally, more patients in the enalapril group than in the sacubitril/valsartan group stopped the study drug due to adverse effects (12.3% vs. 10.7%, p = 0.03).

This study ushered in a new era in heart failure management and added a new medication class – Angiotensin Receptor-Neprilysin Inhibitors or ARNIs – to the arsenal of available heart failure drugs. Entresto (sacubitril/valsartan), the ARNI posterchild, has been advertised widely over the past several years. However, clinical use so far has been lower than expected (see http://www.cardiobrief.org/2017/12/05/after-slow-start-entresto-is-poised-for-takeoff/). Novartis, Entresto’s drug maker, is currently sponsoring PARAGON-HF, a trial of Entresto in patients with heart failure with preserved ejection fraction (HFpEF).

The 2017 ACC/AHA update to the guidelines for management of symptomatic HFrEF states that primary inhibition of the renin-angiotensin system with an ARNI in conjunction with evidence-based beta blockade and aldosterone antagonism is a Class I recommendation (Level B evidence). However, it does not favor this regimen over the Level-A-evidence regimens of an ARB or ACE inhibitor substituted for the ARNI. Yet the new guidelines also state that patients who have chronic symptomatic HFrEF of NYHA class II or III and tolerate an ACE inhibitor or ARB should substitute an ARNI for the ACE inhibitor or ARB in order to further reduce morbidity and mortality (Class I recommendation, level B evidence). See pages 15 and 17 here to read the details.

Bottom line:
Among patients with symptomatic HFrEF, treatment with an ARNI reduces cardiovascular mortality and HF hospitalizations when compared to treatment with enalapril. Due to this study’s impact, the use of ARNIs is now a Class I recommendation by the 2017 ACC/AHA guidelines for the treatment of HFrEF. Despite its higher cost, the use of sacubitril/valsartan appears to be cost-effective in terms of QALYs gained.

Further Reading/References:
1. PARADIGM-HF @ Wiki Journal Club
2. PARADIGM-HF @ 2 Minute Medicine
3. ACC/AHA 2017 Focused Update for Guideline Management of Heart Failure
4. CardioBrief, “After Slow Start Entresto Is Poised For Takeoff.”
5. PARAGON-HF @ ClinicalTrials.gov
6. McMurray et al., “Cost-effectiveness of sacubitril/valsartan in the treatment of heart failure with reduced ejection fraction.” Heart, 2017.

Summary by Patrick Miller, MD

Week 45 – COURAGE

“Optimal Medical Therapy with or without PCI for Stable Coronary Disease”

by the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) Trial Research Group

N Engl J Med. 2007 Apr 12;356(15):1503-16 [free full text]

The optimal medical management of stable coronary artery disease has been well-described. However, prior to the 2007 COURAGE trial, the role of percutaneous coronary intervention (PCI) in the initial management of stable coronary artery disease was unclear. It was known that PCI improved angina symptoms and short-term exercise performance in stable disease, but its mortality benefit and reduction of future myocardial infarction and ACS were unknown.

The trial recruited patients with stable coronary artery disease. (See paper for inclusion/exclusion criteria. Disease had to be sufficiently and objectively severe, but not too severe, and symptoms could not be sustained at the highest CCS grade.) Patients were randomized to either optimal medical management (including antiplatelet, anti-anginal, ACEi/ARB, and cholesterol-lowering therapy) and PCI or to optimal medical management alone. The primary outcome was a composite of all-cause mortality and non-fatal MI.

2287 patients were randomized. Both groups had similar baseline characteristics with the exception of a higher prevalence of proximal LAD disease in the medical-therapy group. Median duration of follow-up was 4.6 years in both groups. Death or non-fatal MI occurred in 18.4% of the PCI group and in 17.8% of the medical-therapy group (p = 0.62). Death, non-fatal MI, or stroke occurred in 20.0% of the PCI group and 19.5% of the medical-therapy group (p = 0.62). Hospitalization for ACS occurred in 12.4% of the PCI group and 11.8% of the medical-therapy group (p = 0.56). Revascularization during follow-up was performed in 21.1% of the PCI group but in 32.6% of the medical-therapy group (HR 0.60, 95% CI 0.51–0.71, p < 0.001). Finally, 66% of PCI patients were free of angina at 1-year follow-up compared with 58% of medical-therapy patients (p < 0.001). Rates were 72% and 67% at 3 years (p = 0.02) and 72% and 74% at five years (not significant).

Thus, in the initial management of stable coronary artery disease, PCI in addition to optimal medical management provided no mortality benefit over optimal medical management alone. However, initial management with PCI did provide a time-limited improvement in angina symptoms.

As the authors of COURAGE nicely summarize on page 1512, the atherosclerotic plaques of ACS and stable CAD are different. Vulnerable, ACS-prone plaques have thin caps and spread outward along the wall of the coronary artery, as opposed to stable CAD plaques, which have thick fibrous caps and are associated with inward-directed remodeling that narrows the artery lumen (and cause reliable angina symptoms and luminal narrowing on coronary angiography).

Notable limitations of this study:

      • Generalizability was limited due to the population, which was largely male, white, and 42% came from VA hospitals.
      • Drug-eluting stents were not clinically available until the last 6 months of the study, so most stents placed were bare metal.

Later meta-analyses were weakly suggestive of an association of PCI with improved all-cause mortality. It is thought that there may be a subset of patients with stable CAD who achieve a mortality benefit from PCI.

The 2017 ORBITA trial made headlines and caused sustained controversy when it demonstrated in a randomized trial that, in the context of optimal medical therapy, PCI did not increase exercise time more than did a sham PCI. Take note of the relatively savage author’s reply to commentary regarding the trial. See blog discussion here. The ORBITA-2 trial is currently underway.

The ongoing ISCHEMIA trial is both eagerly awaited and involved in a degree of controversy after a recent change in endpoints.

It is important to note that all of the above discussions assume that the patient does not have specific coronary artery anatomy (e.g. left main disease, multi-vessel disease with decreased LVEF) in which initial CABG would provide a mortality benefit. Finally, PCI should be considered in patients whose physical activity is limited by angina symptoms despite optimal medical therapy.

Further Reading:
1. COURAGE @ Wiki Journal Club
2. COURAGE @ 2 Minute Medicine
3. Canadian Cardiovascular Society grading of angina pectoris
4. ORBITA-2 @ ClinicalTrials.gov
5. ISCHEMIA @ ClinicalTrials.gov
6. Discussion re: ISCHEMIA trial changes @ CardioBrief

Summary by Duncan F. Moore, MD

Image Credit: National Institutes of Health, US Public Domain, via Wikimedia Commons

Week 43 – FREEDOM

“Strategies for Multivessel Revascularization in Patients with Diabetes”

by the FREEDOM (Future Revascularization Evaluation in Patients with Diabetes Mellitus: Optimal Management of Multivessel Disease) Trial investigators

N Engl J Med. 2012 Dec 20;367(25):2375-84. [free full text]

Previous studies, such as the 1996 BARI trial), have demonstrated that patients who have multivessel coronary artery disease (CAD) and diabetes mellitus (DM) and who received coronary artery bypass grafting (CABG) surgery lived longer than patients undergoing balloon angioplasty. However, since that publication, percutaneous coronary intervention (PCI) technology advanced significantly. Prior to the publication of FREEDOM in 2012, there had only been small, underpowered studies comparing PCI with drug-eluting stent (DES) to CABG. FREEDOM was powered appropriately to discover superiority of revascularization strategy (PCI with DES vs. CABG) in patients with DM and multivessel CAD.

Population:

Inclusion criteria:

      • 18 years or older
      • Diabetes mellitus – defined by American Diabetes Association
      • Multivessel Coronary Artery Disease
        • > 70% stenosis (angiographically confirmed)
        • 2 or more epicardial vessels
        • 2 or more coronary-artery territories

Selected exclusion criteria:

      • NYHA Class III-IV heart failure
      • Prior CABG, valve surgery, or PCI (< 6 months)
      • Prior significant bleed (< 6 months)
      • Left main stenosis ≥ 50%

 

Design:
Patients meeting criteria were assigned 1:1 into PCI with first-generation paclitaxel-eluting stent (51%) or sirolimus-eluting stent (43%) versus CABG. The PCI group was placed on aspirin and clopidogrel for dual antiplatelet therapy (DAPT) for at least 12 months. For the CABG group, arterial revascularization was encouraged. The mean SYNTAX score (tool used to score complexity of CAD) was 26.2 and did not significantly differ between groups. Guideline-driven targets for lowering medical risk factors were used: LDL <70, BP <130/80, HgbA1c <7. Minimum follow-up was 2 years.


Outcomes:

Primary: Composite of death from any cause, non-fatal myocardial infarction (MI), and non-fatal stroke

Secondary

      1. Rate of major adverse cardiovascular and cerebrovascular events at 30 days and 12 months
      2. Repeat revascularization
      3. Annual all-cause mortality
      4. Annual cardiovascular mortality


Results:
953 patients and 947 patients were randomized into the PCI and CABG groups, respectively. At 5 years, the primary outcome (combined death, MI, or stroke) occurred in 200 of the PCI group and 146 of the CABG group (26.6% vs 18.7%, p = 0.005). The curves started diverging at 2 years. All-cause mortality was higher in the PCI group versus the CABG group (16.3% vs 10.9%, p = 0.049). Regarding secondary outcomes, 13.9% of patients in the PCI group had a repeat MI versus 6.0% in the CABG group (p < 0.001). There were fewer strokes in the PCI group than in the CABG group (2.4% vs 5.2%, p = 0.03). There was no statistically significant difference between study groups regarding cardiovascular death (10.9% vs 6.8%, p = 0.12).

At 5 years, the analysis of outcomes according to category of SYNTAX score (≤ 22, 23 to 32, ≥ 33) showed no significant subgroup interaction (p = 0.58).

Regarding safety, major bleeding between the two groups at 30 days was 0.02% for PCI vs 0.04% for CABG (p = 0.13). The incidence of acute renal failure requiring hemodialysis was observed in one patient in the PCI group and eight patients in the CABG group (p = 0.02)

Implication/Discussion:
The BARI Trial (1996) was the first trial to show that patients with DM and multivessel CAD derive mortality benefit from bypass grafting over PCI with balloon angioplasty. Furthermore, the BARI 2D (2009) trial demonstrated this benefit of bypass grafting over PCI with bare metal stents (BMS). At the time of the FREEDOM Trial, there had not been a randomized comparison of CABG versus PCI with newer technology and first-generation paclitaxel/sirolimus DES. In this study, CABG showed a 5.3% absolute reduction in all-cause mortality over PCI as well decreased rates of MI and repeat revascularization. CABG was associated with a mild absolute increase in stroke (2.8%). However, this mild increased stroke risk is consistent with most other comparative trials of the two treatment strategies. There was no statistical difference in major bleeding between the two groups.

CABG is likely better than PCI for various reasons. For one, diabetic arteries are affected diffusely and tend to have more extensive atherosclerotic disease compared to those without diabetes, so the likelihood of successful PCI alone is low. Many suspected that with advancement in PCI (i.e. DES) that the BARI data would become irrelevant. However, CABG continued to show benefit despite the technological advancements of drug-eluting stents and PCI. Improvement in surgical technique as well as the use of arterial revascularization (i.e. internal mammary artery) helped maintain superior outcomes with CABG compared to PCI.

The study was limited by the fact that due to low numbers, the subgroup analysis (i.e. SYNTAX scores) was not appropriately powered for statistical significance. Further, the study was not blinded, and patients may have been treated differently on the basis of their surgical procedure. Also, there was variability of STYNAX scores between the study groups, but this circumstance was thought to reflect real world heterogeneity.

Bottom Line:
CABG was superior to PCI with DES in patients with DM and multivessel CAD in that it significantly reduced rates of death and MI despite a small increased risk of stroke.

Further Reading/References:
1. BARI Trial @ NEJM
2. BARI 2D Trial @ NEJM
3. ACCF/AHA 2011 Guideline for Coronary Artery Bypass Graft Surgery
4. FREEDOM @ Wiki Journal Club
5. FREEDOM @ 2 Minute Medicine
5. FREEDOM @ Visualmed

Summary by Patrick Miller, MD.

Image Credit: Jerry Hecht, US Public Domain, via Wikimedia Commons

Week 36 – HAS-BLED

“A Novel User-Friendly Score (HAS-BLED) To Assess 1-Year Risk of Major Bleeding in Patients with Atrial Fibrillation”

Chest. 2010 Nov;138(5):1093-100 [free full text]

Atrial fibrillation (AF) is a well-known risk factor for ischemic stroke. Stroke risk is further increased by individual comorbidities, such as CHF, HTN, and DM, and can be stratified with scores, such as CHADS2 and CHA2DS2VASC. Patients with intermediate stroke risk are recommended to be treated with oral anticoagulation (OAC). However, stroke risk is often also closely related to bleeding risk, and the benefits of anticoagulation for stroke need to be weighed against the added risk of bleeding. At the time of this study, there were no validated and user-friendly bleeding risk-stratification schemes. This study aimed to develop a practical risk score to estimate the 1-year risk of major bleeding (as defined in the study) in a contemporary, real world cohort of patients with AF.

The study enrolled adults with an EKG or Holter-proven diagnosis of AF. (Patients with mitral valve stenosis or previous valvular surgery were excluded.) No experiment was performed in this retrospective cohort study.

In a derivation cohort, the authors retrospectively performed univariate analyses to identify a range of clinical features associated with major bleeding (p < 0.10). Based on systematic reviews, they added additional risk factors for major bleeding. Ultimately, what resulted was a list of comprehensive risk factors deemed HAS-BLED:

H – Hypertension (> 160 mmHg systolic)
A – Abnormal renal (HD, transplant, Cr > 2.26 mg/dL) and liver function (cirrhosis, bilirubin > 2x normal w/ AST/ALT/ALP > 3x normal) – 1 pt each for abnormal renal or liver function
S – Stroke

B – Bleeding (prior major bleed or predisposition to bleed)
L – Labile INRs (time in therapeutic range < 60%)
E – Elderly (age > 65)
D – Drugs (i.e. ASA, clopidogrel, NSAIDs) or alcohol use (> 8 units per week) concomitantly – 1 pt each for use of either

Each risk factor was equivalent to one point. The HAS-BLED score was then compared to the HEMORR2HAGES scheme [https://www.mdcalc.com/hemorr2hages-score-major-bleeding-risk], a prior tool for estimating bleeding risk.

Outcomes:

      • incidence of major bleeding within 1 year, overall
      • bleeds per 100 patient-years, by HAS-BLED score
      • c-statistic for the HAS-BLED score in predicting the risk of bleeding

Definitions:

      • major bleeding = bleeding causing hospitalization, Hgb drop >2 g/L, or requiring blood transfusion, that was not a hemorrhagic stroke
      • hemorrhagic stroke = focal neurologic deficit of sudden onset, diagnosed by a neurologist, lasting >24h and caused by bleeding

Results:
3,456 patients with AF without mitral valve stenosis or valve surgery who completed their 1-year follow-up were analyzed retrospectively. 64.8% (2242) of these patients were on OAC (12.8% of whom on concurrent antiplatelet therapy), 24% (828) were on antiplatelet therapy alone, and 10.2% (352) received no antithrombotic therapy. 1.5% (53) of patients experienced a major bleed during the first year, with 17% (9) of these patients sustaining intracerebral hemorrhage.

HAS-BLED Score       Bleeds per 100-patient years
0                                        1.13
1                                         1.02
2                                        1.88
3                                        3.74
4                                        8.70
5                                        12.50
6*                                     0.0                   *(n = 2 patients at risk, neither bled)

Patients were given a HAS-BLED score and a HEMORR2HAGES score. C-statistics were then used to determine the predictive accuracy of each model overall as well as within patient subgroups (OAC alone, OAC + antiplatelet, antiplatelet alone, no antithrombotic therapy).

C statistics for HAS-BLED were as follows: for overall cohort, 0.72 (95%CI 0.65-0.79); for OAC alone, 0.69 (95%CI 0.59-0.80); for OAC + antiplatelet, 0.78 (95%CI 0.65-0.91); for antiplatelet alone, 0.91 (95%CI 0.83-1.00); and for those on no antithrombotic therapy, 0.85 (95%CI 0.00-1.00).

C statistics for HEMORR2HAGES were as follows: for overall cohort, 0.66 (95%CI 0.57-0.74); for OAC alone, 0.64 (95%CI 0.53-0.75); for OAC + antiplatelet, 0.83 (95%CI 0.74-0.91); for antiplatelet alone, 0.83 (95%CI 0.68-0.98); and for those without antithrombotic therapy, 0.81 (95%CI 0.00-1.00).

Implication/Discussion:
This study helped to establish a practical and user-friendly assessment of bleeding risk in AF. HAS-BLED is superior to its predecessor HEMORR2HAGES in that it has an easier-to-remember acronym and is quicker and simpler to perform. All of its risk factors are readily available from the clinical history or are routinely tested. Both stratification tools had a broadly similar c-statistics for the overall cohort – 0.72 for HAS-BLED versus 0.66 for HEMORR2HAGES respectively. However, HAS-BLED was particularly useful when looking at antiplatelet therapy alone or no antithrombotic therapy at all (0.91 and 0.85, respectively).

This study is useful because it provides evidence-based, easily-calculable, and actionable risk stratification in assessing bleeding risk in AF. In prior studies, such as ACTIVE-A (ASA + clopidogrel versus ASA alone for patients with AF deemed unsuitable for OAC), almost half of all patients (n= ~3500) were given a classification of “unsuitable for OAC,” which was based solely on physician clinical judgement alone without a predefined objective scoring. Now, physicians have an objective way to assess bleed risk rather than “gut feeling” or wanting to avoid iatrogenic insult.

The RE-LY trial used the HAS-BLED score to decide which patients with AF should get the standard dabigatran dose (150mg BID) versus a lower dose (110mg BID) for anticoagulation. This risk-stratified dosing resulted in a significant reduction in major bleeding compared with warfarin and maintained a similar reduction in stroke risk.

Furthermore, the HAS-BLED score could allow the physician to be more confident when deciding which patients may be appropriate for referral for a left atrial appendage occlusion device (e.g. Watchman).

Limitations:
The study had a limited number of major bleeds and a short follow-up period, and thus it is possible that other important risk factors for bleeding were not identified. Also, there were large numbers of patients lost to 1-year follow-up. These patients were likely to have had more comorbidities and may have transferred to nursing homes or even have died – which may have led to an underestimate of bleeding rates. Furthermore, the study had a modest number of very elderly patients (i.e. 75-84 and ≥85), who are likely to represent the greatest bleeding risk.

Bottom Line:
HAS-BLED provides an easy, practical tool to assess the individual bleeding risk of patients with AF. Oral anticoagulation should be considered for scores of 3 or less. HAS-BLED scores are ≥4, it is reasonable to think about alternatives to oral anticoagulation.

Further Reading/References:
1. HAS-BLED @ 2 Minute Medicine
2. ACTIVE-A trial
3. RE-LY trial:
4. RE-LY @ Wiki Journal Club
5. HAS-BLED Calculator
6. HEMORR2HAGES Calculator
7. CHADS2 Calculator
8. CHA2DS2VASC Calculator
9. Watchman (for Healthcare Professionals)

Summary by Patrick Miller, MD

Image Credit: CardioNetworks, CC BY-SA 3.0, via Wikimedia Commons

Week 32 – ARISTOTLE

“Apixaban versus Warfarin in Patients with Atrial Fibrillation”

N Engl J Med. 2011 Sep 15;365(11):981-92. [free full text]

Prior to the development of the DOACs, warfarin was the standard of care for the reduction of risk of stroke in atrial fibrillation. Drawbacks of warfarin include a narrow therapeutic range, numerous drug and dietary interactions, the need for frequent monitoring, and elevated bleeding risk. Around 2010, the definitive RCTs for the oral direct thrombin inhibitor dabigatran (RE-LY) and the oral factor Xa inhibitor rivaroxaban (ROCKET AF) showed equivalence or superiority to warfarin. Shortly afterward, the ARISTOTLE trial demonstrated the superiority of the oral factor Xa inhibitor apixaban (Eliquis).

The trial enrolled patients with atrial fibrillation or flutter with at least one additional risk factor for stroke (age 75+, prior CVA/TIA, symptomatic CHF, or reduced LVEF). Notably, patients with Cr > 2.5 were excluded. Patients were randomized to treatment with either apixaban BID + placebo warfarin daily (reduced 2.5mg apixaban dose given in patients with 2 or more of the following: age 80+, weight < 60, Cr > 1.5) or to placebo apixaban BID + warfarin daily. The primary efficacy outcome was the incidence of stroke, and the primary safety outcome was “major bleeding” (clinically overt and accompanied by Hgb drop of ≥ 2, “occurring at a critical site,” or resulting in death). Secondary outcomes included all-cause mortality and a composite of major bleeding and “clinically-relevant non-major bleeding.”

9120 patients were assigned to the apixaban group, and 9081 were assigned to the warfarin group. Mean CHADS2 score was 2.1. Fewer patients in the apixaban group discontinued their assigned study drug. Median duration of follow-up was 1.8 years. The incidence of stroke was 1.27% per year in the apixaban group vs. 1.60% per year in the warfarin group (HR 0.79, 95% CI 0.66-0.95, p<0.001). This reduction was consistent across all major subgroups (see Figure 2). Notably, the rate of hemorrhagic stroke was 49% lower in the apixaban group, and the rate of ischemic stroke was 8% lower in the apixaban group. All-cause mortality was 3.52% per year in the apixaban group vs. 3.94% per year in the warfarin group (HR 0.89, 95% CI 0.80-0.999, p=0.047). The incidence of major bleeding was 2.13% per year in the apixaban group vs. 3.09% per year in the warfarin group (HR 0.69, 95% CI 0.60-0.80, p<0.001). The rate of intracranial hemorrhage was 0.33% per year in the apixaban group vs. 0.80% per year in the warfarin group (HR 0.42, 95% CI 0.30-0.58, p<0.001). The rate of any bleeding was 18.1% per year in the apixaban group vs. 25.8% in the warfarin group (p<0.001).

In patients with non-valvular atrial fibrillation and at least one other risk factor for stroke, anticoagulation with apixaban significantly reduced the risk of stroke, major bleeding, and all-cause mortality relative to anticoagulation with warfarin. This was a large RCT that was designed and powered to demonstrate non-inferiority but in fact was able to demonstrate the superiority of apixaban. Along with ROCKET AF and RE-LY, the ARISTOTLE trial ushered in the modern era of DOACs in atrial fibrillation. Apixaban was approved by the FDA for the treatment of non-valvular atrial fibrillation in 2012. Patient prescription cost is no longer a major barrier to prescription. These three major DOACs are all preferred in the DC Medicaid formulary (see page 14). To date, no trial has compared the various DOACs directly.

Further Reading/References:
1. ARISTOTLE @ Wiki Journal Club
2. 2 Minute Medicine
3. “Oral anticoagulants for prevention of stroke in atrial fibrillation: systematic review, network meta-analysis, and cost-effectiveness analysis,” BMJ 2017

Summary by Duncan F. Moore, MD

Week 25 – ALLHAT

“Major Outcomes in High-Risk Hypertensive Patients Randomized to Angiotensin-Converting Enzyme Inhibitor or Calcium Channel Blocker vs. Diuretic”

The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT)

JAMA. 2002 Dec 18;288(23):2981-97. [free full text]

Hypertension is a ubiquitous disease, and the cardiovascular and mortality benefits of BP control have been well described. However, as the number of available antihypertensive classes proliferated in the past several decades, a head-to-head comparison of different antihypertensive regimens was necessary to determine the optimal first-step therapy. The 2002 ALLHAT trial was a landmark trial in this effort.

Population:
33,357 patients aged 55 years or older with hypertension and at least one other coronary heart disease (CHD) risk factor (previous MI or stroke, LVH by ECG or echo, T2DM, current cigarette smoking, HDL < 35 mg/dL, or documentation of other atherosclerotic cardiovascular disease (CVD)). Notable exclusion criteria: history of hospitalization for CHF, history of treated symptomatic CHF, or known LVEF < 35%.

Intervention:
Prior antihypertensives were discontinued upon initiation of the study drug. Patients were randomized to one of three study drugs in a double-blind fashion. Study drugs and additional drugs were added in a step-wise fashion to achieve a goal BP < 140/90 mmHg.

Step 1: titrate assigned study drug

  • chlorthalidone: 12.5 –> 5 (sham titration) –> 25 mg/day
  • amlodipine: 2.5 –> 5 –>  10 mg/day
  • lisinopril: 10 –> 20 –> 40 mg/day

Step 2: add open-label agents at treating physician’s discretion (atenolol, clonidine, or reserpine)

  • atenolol: 25 to 100 mg/day
  • reserpine: 0.05 to 0.2 mg/day
  • clonidine: 0.1 to 0.3 mg BID

Step 3: add hydralazine 25 to 100 mg BID

Comparison:
Pairwise comparisons with respect to outcomes of chlorthalidone vs. either amlodipine or lisinopril. A doxazosin arm existed initially, but it was terminated early due to an excess of CV events, primarily driven by CHF.

Outcomes:
Primary –  combined fatal CAD or nonfatal MI

Secondary

  • all-cause mortality
  • fatal and nonfatal stroke
  • combined CHD (primary outcome, PCI, or hospitalized angina)
  • combined CVD (CHD, stroke, non-hospitalized treated angina, CHF [fatal, hospitalized, or treated non-hospitalized], and PAD)

Results:
Over a mean follow-up period of 4.9 years, there was no difference between the groups in either the primary outcome or all-cause mortality.

When compared with chlorthalidone at 5 years, the amlodipine and lisinopril groups had significantly higher systolic blood pressures (by 0.8 mmHg and 2 mmHg, respectively). The amlodipine group had a lower diastolic blood pressure when compared to the chlorthalidone group (0.8 mmHg).

When comparing amlodipine to chlorthalidone for the pre-specified secondary outcomes, amlodipine was associated with an increased risk of heart failure (RR 1.38; 95% CI 1.25-1.52).

When comparing lisinopril to chlorthalidone for the pre-specified secondary outcomes, lisinopril was associated with an increased risk of stroke (RR 1.15; 95% CI 1.02-1.30), combined CVD (RR 1.10; 95% CI 1.05-1.16), and heart failure (RR 1.20; 95% CI 1.09-1.34). The increased risk of stroke was mostly driven by 3 subgroups: women (RR 1.22; 95% CI 1.01-1.46), blacks (RR 1.40; 95% CI 1.17-1.68), and non-diabetics (RR 1.23; 95% CI 1.05-1.44). The increased risk of CVD was statistically significant in all subgroups except in patients aged less than 65. The increased risk of heart failure was statistically significant in all subgroups.

Discussion:
In patients with hypertension and one risk factor for CAD, chlorthalidone, lisinopril, and amlodipine performed similarly in reducing the risks of fatal CAD and nonfatal MI.

The study has several strengths: a large and diverse study population, a randomized, double-blind structure, and the rigorous evaluation of three of the most commonly prescribed “newer” classes of antihypertensives. Unfortunately, neither an ARB nor an aldosterone antagonist was included in the study. Additionally, the step-up therapies were not reflective of contemporary practice. (Instead, patients would likely be prescribed one or more of the primary study drugs.)

The ALLHAT study is one of the hallmark studies of hypertension and has played an important role in hypertension guidelines since it was published. Following the publication of ALLHAT, thiazide diuretics became widely used as first line drugs in the treatment of hypertension. The low cost of thiazides and their limited side-effect profile are particularly attractive class features. While ALLHAT looked specifically at chlorthalidone, in practice the positive findings were attributed to HCTZ, which has been more often prescribed. The authors of ALLHAT argued that the superiority of thiazides was likely a class effect, but according to the analysis at Wiki Journal Club, “there is little direct evidence that HCTZ specifically reduces the incidence of CVD among hypertensive individuals.” Furthermore, a 2006 study noted that that HCTZ has worse 24-hour BP control than chlorthalidone due to a shorter half-life. The ALLHAT authors note that “since a large proportion of participants required more than 1 drug to control their BP, it is reasonable to infer that a diuretic be included in all multi-drug regimens, if possible.” The 2017 ACC/AHA High Blood Pressure Guidelines state that, of the four thiazide diuretics on the market, chlorthalidone is preferred because of a prolonged half-life and trial-proven reduction of CVD (via the ALLHAT study).

Further Reading / References:
1. 2017 ACC Hypertension Guidelines
2. Wiki Journal Club
3. 2 Minute Medicine
4. Ernst et al, “Comparative antihypertensive effects of hydrochlorothiazide and chlorthalidone on ambulatory and office blood pressure.” (2006)
5. Gillis Pharmaceuticals [https://www.youtube.com/watch?v=HOxuAtehumc]
6. Concepts in Hypertension, Volume 2 Issue 6

Summary by Ryan Commins MD

Image Credit: Kimivanil, CC BY-SA 4.0, via Wikimedia Commons