Week 26 – HACA

“Mild Therapeutic Hypothermia to Improve the Neurologic Outcome After Cardiac Arrest”

by the Hypothermia After Cardiac Arrest Study Group

N Engl J Med. 2002 Feb 21;346(8):549-56. [free full text]

Neurologic injury after cardiac arrest is a significant source of morbidity and mortality. It is hypothesized that brain reperfusion injury (via the generation of free radicals and other inflammatory mediators) following ischemic time is the primary pathophysiologic basis. Animal models and limited human studies have demonstrated that patients treated with mild hypothermia following cardiac arrest have improved neurologic outcome. The 2002 HACA study sought to evaluate prospectively the utility of therapeutic hypothermia in reducing neurologic sequelae and mortality post-arrest.

Population: European patients who achieve return of spontaneous circulation (ROSC) after presenting to the ED in cardiac arrest

inclusion criteria: witnessed arrest, ventricular fibrillation or non-perfusing ventricular tachycardia as initial rhythm, estimated interval 5 to 15 min from collapse to first resuscitation attempt, no more than 60 min from collapse to ROSC, age 18-75

pertinent exclusion: pt already < 30ºC on admission, comatose state prior to arrest d/t CNS drugs, response to commands following ROSC

Intervention: Cooling to target temperature 32-34ºC with maintenance for 24 hrs followed by passive rewarming. Pts received pancuronium for neuromuscular blockade to prevent shivering.

Comparison: Standard intensive care

Outcomes:
Primary: a “favorable neurologic outcome” at 6 months defined as Pittsburgh cerebral-performance scale category 1 (good recovery) or 2 (moderate disability). (Of note, the examiner was blinded to treatment group allocation.)

Secondary:

  • all-cause mortality at 6 months
  • specific complications within the first 7 days: bleeding “of any severity,” pneumonia, sepsis, pancreatitis, renal failure, pulmonary edema, seizures, arrhythmias, and pressure sores

Results:
3551 consecutive patients were assessed for enrollment and ultimately 275 met inclusion criteria and were randomized. The normothermia group had more baseline DM and CAD and were more likely to have received BLS from a bystander prior to the ED.

Regarding neurologic outcome at 6 months, 75 of 136 (55%) of the hypothermia group had a favorable neurologic outcome, versus 54/137 (39%) in the normothermia group (RR 1.40, 95% CI 1.08-1.81, p = 0.009; NNT = 6). After adjusting for all baseline characteristics, the RR increased slightly to 1.47 (95% CI 1.09-1.82).

Regarding death at 6 months, 41% of the hypothermia group had died, versus 55% of the normothermia group (RR 0.74, 95% CI 0.58-0.95, p = 0.02; NNT = 7). After adjusting for all baseline characteristics, RR = 0.62 (95% CI 0.36-0.95). There was no difference among the two groups in the rate of any complication or in the total number of complications during the first 7 days.

Implication/Discussion:
In ED patients with Vfib or pulseless VT arrest who did not have meaningful response to commands after ROSC, immediate therapeutic hypothermia reduced the rate of neurologic sequelae and mortality at 6 months.

Corresponding practice point from Dr. Sonti and Dr. Vinayak and their Georgetown Critical Care Top 40: “If after ROSC your patient remains unresponsive and does not have refractory hypoxemia/hypotension/coagulopathy, you should initiate therapeutic hypothermia even if the arrest was PEA. The benefit seen was substantial and any proposed biologic mechanism would seemingly apply to all causes of cardiac arrest. The investigators used pancuronium to prevent shivering; [at MGUH] there is a ‘shivering’ protocol in place and if refractory, paralytics can be used.”

This trial, as well as a concurrent publication by Benard et al. ushered in a new paradigm of therapeutic hypothermia or “targeted temperature management” (TTM) following cardiac arrest. Numerous trials in related populations and with modified interventions (e.g. target temperature 36º C) were performed over the following decade, and ultimately led to the current standard of practice.

Per UpToDate, the collective trial data suggest that “active control of the post-cardiac arrest patient’s core temperature, with a target between 32 and 36ºC, followed by active avoidance of fever, is the optimal strategy to promote patient survival.” TTM should be undertaken in all patients who do not follow commands or have purposeful movements following ROSC. Expert opinion at UpToDate recommends maintaining temperature control for at least 48 hours.

Further Reading/References:
1. HACA @ 2 Minute Medicine
2. HACA @ Wiki Journal Club
3. HACA @ Visualmed
4. Georgetown Critical Care Top 40, page 23 (Jan. 2016)
5. PulmCCM.org, “Hypothermia did not help after out-of-hospital cardiac arrest, in largest study yet”
6. Cochrane Review, “Hypothermia for neuroprotection in adults after cardiopulmonary resuscitation”
7. The NNT, “Mild Therapeutic Hypothermia for Neuroprotection Following CPR”
8. UpToDate, “Post-cardiac arrest management in adults”

Summary by Duncan F. Moore, MD

Week 25 – ALLHAT

“Major Outcomes in High-Risk Hypertensive Patients Randomized to Angiotensin-Converting Enzyme Inhibitor or Calcium Channel Blocker vs. Diuretic”

The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT)

JAMA. 2002 Dec 18;288(23):2981-97. [free full text]

Hypertension is a ubiquitous disease, and the cardiovascular and mortality benefits of BP control have been well described. However, as the number of available antihypertensive classes proliferated in the past several decades, a head-to-head comparison of different antihypertensive regimens was necessary to determine the optimal first-step therapy. The 2002 ALLHAT trial was a landmark trial in this effort.

Population:
33,357 patients aged 55 years or older with hypertension and at least one other coronary heart disease (CHD) risk factor (previous MI or stroke, LVH by ECG or echo, T2DM, current cigarette smoking, HDL < 35 mg/dL, or documentation of other atherosclerotic cardiovascular disease (CVD)). Notable exclusion criteria: history of hospitalization for CHF, history of treated symptomatic CHF, or known LVEF < 35%.

Intervention:
Prior antihypertensives were discontinued upon initiation of the study drug. Patients were randomized to one of three study drugs in a double-blind fashion. Study drugs and additional drugs were added in a step-wise fashion to achieve a goal BP < 140/90 mmHg.

Step 1: titrate assigned study drug

  • chlorthalidone: 12.5 –> 5 (sham titration) –> 25 mg/day
  • amlodipine: 2.5 –> 5 –>  10 mg/day
  • lisinopril: 10 –> 20 –> 40 mg/day

Step 2: add open-label agents at treating physician’s discretion (atenolol, clonidine, or reserpine)

  • atenolol: 25 to 100 mg/day
  • reserpine: 0.05 to 0.2 mg/day
  • clonidine: 0.1 to 0.3 mg BID

Step 3: add hydralazine 25 to 100 mg BID

Comparison:
Pairwise comparisons with respect to outcomes of chlorthalidone vs. either amlodipine or lisinopril. A doxazosin arm existed initially, but it was terminated early due to an excess of CV events, primarily driven by CHF.

Outcomes:
Primary –  combined fatal CAD or nonfatal MI

Secondary

  • all-cause mortality
  • fatal and nonfatal stroke
  • combined CHD (primary outcome, PCI, or hospitalized angina)
  • combined CVD (CHD, stroke, non-hospitalized treated angina, CHF [fatal, hospitalized, or treated non-hospitalized], and PAD)

Results:
Over a mean follow-up period of 4.9 years, there was no difference between the groups in either the primary outcome or all-cause mortality.

When compared with chlorthalidone at 5 years, the amlodipine and lisinopril groups had significantly higher systolic blood pressures (by 0.8 mmHg and 2 mmHg, respectively). The amlodipine group had a lower diastolic blood pressure when compared to the chlorthalidone group (0.8 mmHg).

When comparing amlodipine to chlorthalidone for the pre-specified secondary outcomes, amlodipine was associated with an increased risk of heart failure (RR 1.38; 95% CI 1.25-1.52).

When comparing lisinopril to chlorthalidone for the pre-specified secondary outcomes, lisinopril was associated with an increased risk of stroke (RR 1.15; 95% CI 1.02-1.30), combined CVD (RR 1.10; 95% CI 1.05-1.16), and heart failure (RR 1.20; 95% CI 1.09-1.34). The increased risk of stroke was mostly driven by 3 subgroups: women (RR 1.22; 95% CI 1.01-1.46), blacks (RR 1.40; 95% CI 1.17-1.68), and non-diabetics (RR 1.23; 95% CI 1.05-1.44). The increased risk of CVD was statistically significant in all subgroups except in patients aged less than 65. The increased risk of heart failure was statistically significant in all subgroups.

Discussion:
In patients with hypertension and one risk factor for CAD, chlorthalidone, lisinopril, and amlodipine performed similarly in reducing the risks of fatal CAD and nonfatal MI.

The study has several strengths: a large and diverse study population, a randomized, double-blind structure, and the rigorous evaluation of three of the most commonly prescribed “newer” classes of antihypertensives. Unfortunately, neither an ARB nor an aldosterone antagonist was included in the study. Additionally, the step-up therapies were not reflective of contemporary practice. (Instead, patients would likely be prescribed one or more of the primary study drugs.)

The ALLHAT study is one of the hallmark studies of hypertension and has played an important role in hypertension guidelines since it was published. Following the publication of ALLHAT, thiazide diuretics became widely used as first line drugs in the treatment of hypertension. The low cost of thiazides and their limited side-effect profile are particularly attractive class features. While ALLHAT looked specifically at chlorthalidone, in practice the positive findings were attributed to HCTZ, which has been more often prescribed. The authors of ALLHAT argued that the superiority of thiazides was likely a class effect, but according to the analysis at Wiki Journal Club, “there is little direct evidence that HCTZ specifically reduces the incidence of CVD among hypertensive individuals.” Furthermore, a 2006 study noted that that HCTZ has worse 24-hour BP control than chlorthalidone due to a shorter half-life. The ALLHAT authors note that “since a large proportion of participants required more than 1 drug to control their BP, it is reasonable to infer that a diuretic be included in all multi-drug regimens, if possible.” The 2017 ACC/AHA High Blood Pressure Guidelines state that, of the four thiazide diuretics on the market, chlorthalidone is preferred because of a prolonged half-life and trial-proven reduction of CVD (via the ALLHAT study).

Further Reading / References:
1. 2017 ACC Hypertension Guidelines
2. Wiki Journal Club
3. 2 Minute Medicine
4. Ernst et al, “Comparative antihypertensive effects of hydrochlorothiazide and chlorthalidone on ambulatory and office blood pressure.” (2006)
5. Gillis Pharmaceuticals [https://www.youtube.com/watch?v=HOxuAtehumc]
6. Concepts in Hypertension, Volume 2 Issue 6

Summary by Ryan Commins MD

Image Credit: Kimivanil, CC BY-SA 4.0, via Wikimedia Commons

Week 24 – The Oregon Experiment

“The Oregon Experiment – Effects of Medicaid on Clinical Outcomes”

N Engl J Med. 2013 May 2;368(18):1713-22. [free full text]

Access to health insurance is not synonymous with access to healthcare. However, it has been generally assumed that increased access to insurance should improve healthcare outcomes among the newly insured. In 2008, Oregon expanded its Medicaid program by approximately 30,000 patients. These policies were lotteried among approximately 90,000 applicants. The authors of the Oregon Health Study Group sought to study the impact of this “randomized” intervention, and the results were hotly anticipated given the impending Medicaid expansion of the 2010 PPACA.

Population: Portland, Oregon residents who applied for the 2008 Medicaid expansion

Not all applicants were actually eligible.

Eligibility criteria: age 19-64, US citizen, Oregon resident, ineligible for other public insurance, uninsured for the previous 6 months, income below 100% of the federal poverty level, and assets < $2000.

Intervention: winning the Medicaid-expansion lottery

Comparison: The statistical analyses of clinical outcomes in this study do not actually compare winners to non-winners. Instead, they compare non-winners to winners who ultimately received Medicaid coverage. Winning the lottery increased the chance of being enrolled in Medicaid by about 25 percentage points. Given the assumption that “the lottery affected outcomes only by changing Medicaid enrollment, the effect of being enrolled in Medicaid was simply about 4 times…as high as the effect of being able to apply for Medicaid.” This allowed the authors to conclude causal inferences regarding the benefits of new Medicaid coverage.

Outcomes:
Values or point prevalence of the following at approximately 2 years post-lottery:
1. blood pressure, diagnosis of hypertension
2. cholesterol levels, diagnosis of hyperlipidemia
3. HgbA1c, diagnosis of diabetes
4. Framingham risk score for cardiovascular events
5. positive depression screen, depression dx after lottery, antidepressant use
6. health-related quality of life measures
7. measures of financial hardship (e.g. catastrophic expenditures)
8. measures of healthcare utilization (e.g. estimated total annual expenditure)

These outcomes were assessed via in-person interviews, assessment of blood pressure, and a blood draw for biomarkers.

Results:
The study population included 10,405 lottery winners and 10,340 non-winners. Interviews were performed ~25 months after the lottery. While there were no significant differences in baseline characteristics among winners and non-winners, “the subgroup of lottery winners who ultimately enrolled in Medicaid was not comparable to the overall group of persons who did not win the lottery” (no demographic or other data provided).

At approximately 2 years following the lottery, there were no differences in blood pressure or prevalence of diagnosed hypertension between the lottery non-winners and those who enrolled in Medicaid. There were also no differences between the groups in cholesterol values, prevalence of diagnosis of hypercholesterolemia after the lottery, or use of medications for high cholesterol. While more Medicaid enrollees were diagnosed with diabetes after the lottery (absolute increase of 3.8 percentage points, 95% CI 1.93-5.73, p<0.001; prevalence 1.1% in non-winners) and were more likely to be using medications for diabetes than the non-winners (absolute increase of 5.43 percentage points, 95% CI 1.39-9.48, p=0.008), there was no statistically significant difference in HgbA1c values among the two groups. Medicaid coverage did not significantly alter 10-year Framingham cardiovascular event risk. At follow-up, fewer Medicaid-enrolled patients screened positive for depression (decrease of 9.15 percentage points, 95% CI -16.70 to -1.60,  p=0.02), while more had formally been diagnosed with depression during the interval since the lottery (absolute increase of 3.81 percentage points, 95% CI 0.15-7.46, p=0.04). There was no significant difference in prevalence of antidepressant use.

Medicaid-enrolled patients were more likely to report that their health was the same or better since 1 year prior (increase of 7.84 percentage points, 95% CI 1.45-14.23, p=0.02). There were no significant differences in scores for quality of life related to physical health or in self-reported levels of pain or global happiness. As seen in Table 4, Medicaid enrollment was associated with decreased out-of-pocket spending (15% had a decrease, average decrease $215), decreased prevalence of medical debt, and a decreased prevalence of catastrophic expenditures (absolute decrease of 4.48 percentage points, 95% CI -8.26 to 0.69, p=0.02).

Medicaid-enrolled patients were prescribed more drugs and had more office visits but no change in number of ED visits or hospital admissions. Medicaid coverage was estimated to increase total annual medical spending by $1,172 per person (an approximately 35% increase). Of note, patients enrolled in Medicaid were more likely to have received a pap smear or mammogram during the study period.

Implication/Discussion:
This study was the first major study to “randomize” health insurance coverage and study the health outcome effects of gaining insurance.

Overall, this study demonstrated that obtaining Medicaid coverage “increased overall health care utilization, improved self-reported health, and reduced financial strain.” However, its effects on patient-level health outcomes were much more muted. Medicaid coverage did not impact the prevalence or severity of hypertension or hyperlipidemia. Medicaid coverage appeared to aid in the detection of diabetes mellitus and use of antihyperglycemics but did not affect average A1c. Accordingly, there was no significant difference in Framingham risk score among the two groups.

The glaring limitation of this study was that its statistical analyses compared two groups with unequal baseline characteristics, despite the purported “randomization” of the lottery. Effectively, by comparing Medicaid enrollees (and not all lottery winners) to the lottery non-winners, the authors failed to perform an intention-to-treat analysis. This design engendered significant confounding, and it is remarkable that the authors did not even attempt to report baseline characteristics among the final two groups, let alone control for any such differences in their final analyses. Furthermore, the fact that not all reported analyses were pre-specified raises suspicion of post hoc data dredging for statistically significant results (“p-hacking”). Overall, power was limited in this study due to the low prevalence of the conditions studied.

Contemporary analysis of this study, both within medicine and within the political sphere, was widely divergent. Medicaid-expansion proponents noted that new access to Medicaid provided a critical financial buffer from potentially catastrophic medical expenditures and allowed increased access to care (as measured by clinic visits, medication use, etc.), while detractors noted that, despite this costly program expansion and fine-toothed analysis, little hard-outcome benefit was realized during the (admittedly limited) follow-up at two years.

Access to insurance is only the starting point in improving the health of the poor. The authors note that “the effects of Medicaid coverage may be limited by the multiple sources of slippage…[including] access to care, diagnosis of underlying conditions, prescription of appropriate medications, compliance with recommendations, and effectiveness of treatment in improving health.”

Further Reading/References:
1. Baicker et al. (2013), “The Impact of Medicaid on Labor Force Activity and Program Participation: Evidence from the Oregon Health Insurance Experiment”
2. Taubman et al. (2014), “Medicaid Increases Emergency-Department Use: Evidence from Oregon’s Health Insurance Experiment”
3. The Washington Post, “Here’s what the Oregon Medicaid study really said” (2013)
4. Michael Cannon, “Oregon Study Throws a Stop Sign in Front of ObamaCare’s Medicaid Expansion”
5. HealthAffairs Policy Brief, “The Oregon Health Insurance Experiment”
6. The Oregon Health Insurance Experiment

Summary by Duncan F. Moore, MD

Image Credit: Centers for Medicare and Medicaid Services, Public Domain, via Wikimedia Commons

Week 23 – TRICC

“A Multicenter, Randomized, Controlled Clinical Trial of Transfusion Requirements in Critical Care”

N Engl J Med. 1999 Feb 11; 340(6): 409-417. [free full text]

Although intuitively a hemoglobin closer to normal physiologic concentration seems like it would be beneficial, the vast majority of the time in inpatient settings we use a hemoglobin concentration of 7g/dL as our threshold for transfusion in anemia. Historically, higher hemoglobin cutoffs were used with aims to keep Hgb > 10g/dL. In 1999, the landmark TRICC trial demonstrated no mortality benefit in the liberal transfusion strategy and harm in certain subgroup analyses.

Population:

Inclusion: critically ill patients expected to be in ICU > 24h, Hgb ≤ 9g/dL within 72hr of ICU admission, and clinically euvolemic after fluid resuscitation

Exclusion criteria: age < 16, inability to receive blood products, active bleed, chronic anemia, pregnancy, brain death, consideration of withdrawal of care, and admission after routine cardiac procedure.

Patients were randomized to either a liberal transfusion strategy (transfuse to Hgb goal 10-12g/dL, n = 420) or a restrictive strategy (transfuse to Hgb goal 7-9g/dL, n = 418). The primary outcome was 30-day all-cause mortality. Secondary outcomes included 60-day all-cause mortality, mortality during hospital stay (ICU plus step-down), multiple-organ dysfunction score, and change in organ dysfunction from baseline. Subgroup analyses included APACHE II score ≤ 20 (i.e. less-ill patients), patients younger than 55, cardiac disease, severe infection/septic shock, and trauma.

Results:
The primary outcome of 30-day mortality was similar between the two groups (18.7% vs. 23.3%, p = 0.11). The secondary outcome of mortality rate during hospitalization was lower in the restrictive strategy (22.2% vs. 28.1%, p = 0.05). (Of note, the mean length of stay was about 35 days for both groups.) 60-day all-cause mortality trended towards lower in the restrictive strategy although did not reach statistical significance (22.7% vs. 26.5 %, p = 0.23). Between the two groups, there was no significant difference in multiple-organ dysfunction score or change in organ dysfunction from baseline.

Subgroup analyses in patients with APACHE II score ≤ 20 and patients younger than 55 demonstrated lower 30-day mortality and lower multiple-organ dysfunction score among patients treated with the restrictive strategy. In the subgroups of primary disease process (i.e. cardiac disease, severe infection/septic shock, and trauma) there was no significant differences among treatment arms.

Complications in the ICU were monitored, and there was a significant increase in cardiac events (primarily pulmonary edema) in the liberal strategy group when compared to the restrictive strategy group.

Discussion/Implication:
The TRICC trial demonstrated that, among ICU patients with anemia, there was no difference in 30-day mortality between a restrictive and liberal transfusion strategy. Secondary outcomes were notable for a decrease in inpatient mortality with the restrictive strategy. Furthermore, subgroup analyses showed benefit in various metrics for a restrictive transfusion strategy when adjusting for younger and less ill patients. This evidence laid the groundwork for our current standard of transfusing to hemoglobin 7g/dL. A restrictive strategy has also been supported by more recent studies. In 2014 the Transfusion Thresholds in Septic Shock (TRISS) study showed no change in 90-day mortality with a restrictive strategy. Additionally, in 2013 the Transfusion Strategy for Acute Upper Gastrointestinal Bleeding study showed reduced 40-day mortality in the restrictive strategy. However, the study’s exclusion of patients who had massive exsanguination or low rebleeding risk reduced generalizability. Currently, the Surviving Sepsis Campaign endorses transfusing RBCs only when Hgb < 7g/dL unless there are extenuating circumstances such as MI, severe hypoxemia, or active hemorrhage.

Further reading:
1. TRICC @ Wiki Journal Club, @ 2 Minute Medicine
2. TRISS @ Wiki Journal Club, full text, Georgetown Critical Care Top 40 pages 14-15
3. “Transfusion strategies for acute upper gastrointestinal bleeding” (NEJM 2013) @ 52 in 52 (2017-2018) Week 46), @ Wiki Journal Club, full text
4. “Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2016”

Summary by Gordon Pelegrin, MD

Image Credit: U.S. Air Force Master Sgt. Tracy L. DeMarco, US public domain, via WikiMedia Commons

Week 22 – RALES

“The effect of spironolactone on morbidity and mortality in patients with severe heart failure”

by the Randomized Aldactone Evaluation Study Investigators

N Engl J Med. 1999 Sep 2;341(10):709-17. [free full text]

Inhibition of the renin-angiotensin-aldosterone system (RAAS) is a tenet of the treatment of heart failure with reduced ejection fraction (see post from Week 6 – SOLVD). However, physiologic evidence exists that suggests ACEis only partially inhibit aldosterone production. It had been hypothesized that aldosterone receptor blockade (e.g. with spironolactone) in conjunction with ACE inhibition could synergistically improve RAAS blockade; however, there was substantial clinician concern about the risk of hyperkalemia. In 1996, the RALES investigators demonstrated that the addition of spironolactone 12.5 or 25mg daily in combination with ACEi resulted in laboratory evidence of increased RAAS inhibition at 12 weeks with an acceptable increased risk of hyperkalemia. The 1999 RALES study was thus designed to evaluate prospectively the mortality benefit and safety of the addition of relatively low-dose aldosterone treatment to the standard HFrEF treatment regimen.

The study enrolled patients with severe HFrEF (LVEF ≤ 35% and NYHA class IV symptoms within the past 6 months and class III or IV symptoms at enrollment) currently being treated with an ACEi (if tolerated) and a loop diuretic. Patients were randomized to the addition of spironolactone 25mg PO daily or placebo. (The dose could be increased at 8 weeks to 50mg PO daily if the patient showed signs or symptoms of progression of CHF without evidence of hyperkalemia.) The primary outcome was all-cause mortality. Secondary outcomes included death from cardiac causes, hospitalization for cardiac causes, change in NYHA functional class, and incidence of hyperkalemia.

1663 patients were randomized. The trial was stopped early (mean follow-up of 24 months) due to the marked improvement in mortality among the spironolactone group. Among the placebo group, 386 (46%) patients died, whereas only 284 (35%) patients among the spironolactone group died (RR 0.70, 95% CI 0.60 to 0.82, p < 0.001; NNT = 8.8). See the dramatic Kaplan-Meier curve in Figure 1. Relative to placebo, spironolactone treatment reduced deaths secondary to cardiac causes by 31% and hospitalizations for cardiac causes by 30% (p < 0.001 for both). In placebo patients, NYHA class improved in 33% of cases, was unchanged in 18%, and worsened in 48% of patients; in spironolactone patients, the NYHA class improved in 41%, was unchanged in 21%, and worsened in 38% of patients (p < 0.001 for group difference by Wilcoxon test). “Serious hyperkalemia” occurred in 10 (1%) of placebo patients and 14 (2%) of spironolactone patients (p = 0.42). Treatment discontinuation rates were similar among the two groups.

Among patients with severe HFrEF, the addition of spironolactone improved mortality, reduced hospitalizations for cardiac causes, and improved symptoms without conferring an increased risk of serious hyperkalemia. The authors hypothesized that spironolactone “can prevent progressive heart failure by averting sodium retention and myocardial fibrosis” and can “prevent sudden death from cardiac causes by averting potassium loss and by increasing the myocardial uptake of norepinephrine.” Myocardial fibrosis is thought to be reduced via blocking the role aldosterone plays in collagen formation. Overall, this was a well-designed double-blind RCT that built upon the safety data of the safe-dose-finding 1996 RALES trial and ushered in the era of routine use of aldosterone receptor blockade in severe HFrEF. In 2003, the EPHESUS trial trial demonstrated a mortality benefit of aldosterone antagonism (with eplerenone) among patients with LV dysfunction following acute MI, and in 2011, the EMPHASIS-HF trial demonstrated a reduction in CV death or HF hospitalization with eplerenone use among patients with EF ≤ 35% and NYHA class II symptoms (and notably among patients with a much higher prevalence of beta-blocker use than those of the mid-1990s RALES cohort). The 2014 TOPCAT trial demonstrated that, among patients with HFpEF, spironolactone does not reduce a composite endpoint of CV mortality, aborted cardiac arrest, or HF hospitalizations.

The 2013 ACCF/AHA Guideline for the Management of Heart Failure recommends the use of aldosterone receptor antagonists in patients with NYHA class II-IV symptoms with LVEF ≤ 35% and following an acute MI in patients with LVEF ≤ 40% with symptomatic HF or with a history of diabetes mellitus. Contraindications include Cr ≥ 2.5 or K ≥ 5.0.

Further Reading/References:
1. “Effectiveness of spironolactone added to an angiotensin-converting enzyme inhibitor and a loop diuretic for severe chronic congestive heart failure (the Randomized Aldactone Evaluation Study [RALES]).” American Journal of Cardiology, 1996.
2. RALES @ Wiki Journal Club
3. RALES @ 2 Minute Medicine
4. EPHESUS @ Wiki Journal Club
5. EMPHASIS-HF @ Wiki Journal Club
6. TOPCAT @ Wiki Journal Club
7. 2013 ACCF/AHA Guideline for the Management of Heart Failure

Summary by Duncan F. Moore, MD

Image Credit: Spirono, CC0 1.0, via Wikimedia Commons