Week 20 – Omeprazole for Bleeding Peptic Ulcers

“Effect of Intravenous Omeprazole on Recurrent Bleeding After Endoscopic Treatment of Bleeding Peptic Ulcers”

N Engl J Med. 2000 Aug 3;343(5):310-6. [free full text]

Intravenous proton-pump inhibitor (PPI) therapy is a cornerstone of modern therapy for bleeding peptic ulcers. However, prior to this 2000 study by Lau et al., the role of PPIs in the prevention of recurrent bleeding after endoscopic treatment was unclear. At the time, re-bleeding rates after endoscopic treatment were noted to be approximately 15-20%. Although other studies had approached this question, no high-quality, large, blinded RCT had examined adjuvant PPI use immediately following endoscopic treatment.

The study enrolled patients who had a bleeding gastroduodenal ulcer visualized on endoscopy and in whom hemostasis was achieved following epinephrine injection and thermocoagulation. Enrollees were randomized to treatment with either omeprazole 80mg IV bolus followed by 8mg/hr infusion x72 hours then followed by omeprazole 20mg PO x8 weeks or to placebo bolus + drip x72 hours followed by omeprazole 20mg PO x8 weeks. The primary outcome was recurrent bleeding within 30 days. Secondary outcomes included recurrent bleeding within 72 hours, amount of blood transfused by day 30, hospitalization duration, and all-cause 30-day mortality.

120 patients were randomized to each arm. The trial was terminated early due to the finding on interim analysis of a significantly lower recurrent bleeding rate in the omeprazole arm. Bleeding re-occurred within 30 days in 8 (6.7%) omeprazole patients versus 27 (22.5%) placebo patients (HR 3.9, 95% CI 1.7-9.0; NNT 6.3). A Cox proportional-hazards model, when adjusted for size and location of ulcers, presence/absence of coexisting illness, and history of ulcer disease, revealed a similar hazard ratio (HR 3.9, 95% CI 1.7-9.1). Recurrent bleeding was most common during the first 72 hrs (4.2% of the omeprazole group versus 20% of the placebo group, RR 4.80, 95% CI 1.89-12.2, p<0.001). For a nice visualization of the early separation of re-bleeding rates, see the Kaplan-Meier curve in Figure 1. The mean number of units of blood transfused within 30 days was 2.7 ± 2.5 in the omeprazole group versus 3.5 ± 3.8 in the placebo group (p = 0.04). Regarding duration of hospitalization, 46.7% of omeprazole patients were admitted for < 5 days versus 31.7% of placebo patients (p = 0.02). Median stay was 4 days in the omeprazole group versus 5 days in the placebo group (p = 0.006). 4.2% of the omeprazole patients died within 30 days, whereas 10% of the placebo patients died (p = 0.13).

Treatment with intravenous omeprazole immediately following endoscopic intervention for bleeding peptic ulcer significantly reduced the rate of recurrent bleeding. This effect was most prominent within the first 3 days of therapy. This intervention also reduced blood transfusion requirements and shortened hospital stays. The presumed mechanism of action is increased gastric pH facilitating platelet aggregation. In 2018, the benefit of this intervention seems so obvious based on its description alone that one would not imagine that such a trial would be funded or published in such a high-profile journal. However, the annals of medicine are littered with now-discarded interventions that made sense from a theoretical or mechanistic perspective but were demonstrated to be ineffective or even harmful (e.g. pharmacologic suppression of ventricular arrhythmias post-MI or renal denervation for refractory HTN).

Today, bleeding peptic ulcers are treated with an IV PPI twice daily. Per UpToDate, meta-analyses have not shown a benefit of continuous PPI infusion over this IV BID dosing. However, per 2012 guidelines in the American Journal of Gastroenterology, patients with active bleeding or non-bleeding visible vessels should receive both endoscopic intervention and IV PPI bolus followed by infusion.

Further Reading/References:
1. Wiki Journal Club
2. 2 Minute Medicine
3. UpToDate, “Overview of the Treatment of Bleeding Peptic Ulcers”
4. Laine L, Jensen DM. “Management of patients with ulcer bleeding.” Am J Gastroenterol. 2012

Summary by Duncan F. Moore, MD

Image credit: Wesalius, CC BY 4.0, via Wikimedia Commons

Week 19 – COPERNICUS

“Effect of carvedilol on survival in severe chronic heart failure”

by the Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) Study Group

N Engl J Med. 2001 May 31;344(22):1651-8. [free full text]

We are all familiar with the role of beta-blockers in the management of heart failure with reduced ejection fraction. In the late 1990s, a growing body of excellent RCTs demonstrated that metoprolol succinate, bisoprolol, and carvedilol improved morbidity and mortality in patients with mild to moderate HFrEF. However, the only trial of beta-blockade (with bucindolol) in patients with severe HFrEF failed to demonstrate a mortality benefit. In 2001, the COPERNICUS trial further elucidated the mortality benefit of carvedilol in patients with severe HFrEF.

The study enrolled patients with severe CHF (NYHA class III-IV symptoms and LVEF < 25%) despite “appropriate conventional therapy” and randomized them to treatment with carvedilol with protocolized uptitration (in addition to pt’s usual meds) or placebo with protocolized uptitration (in addition to pt’s usual meds). The major outcomes measured were all-cause mortality and the combined risk of death or hospitalization for any cause.

2289 patients were randomized before the trial was stopped early due to higher than expected survival benefit in the carvedilol arm. Mean follow-up was 10.4 months. Regarding mortality, 190 (16.8%) of placebo patients died, while only 130 (11.2%) of carvedilol patients died (p = 0.0014) (NNT = 17.9). Regarding mortality or hospitalization, 507 (44.7%) of placebo patients died or were hospitalized, but only 425 (36.8%) of carvedilol patients died or were hospitalized (NNT = 12.6). Both outcomes were found to be of similar directions and magnitudes in subgroup analyses (age, sex, LVEF < 20% or >20%, ischemic vs. non-ischemic CHF, study site location, and no CHF hospitalization within year preceding randomization).

Implication/Discussion:
In severe HFrEF, carvedilol significantly reduces mortality and hospitalization risk.

This was a straightforward, well-designed, double-blind RCT with a compelling conclusion. In addition, the dropout rate was higher in the placebo arm than the carvedilol arm! Despite longstanding clinician fears that beta-blockade would be ineffective or even harmful in patients with already advanced (but compensated) HFrEF, this trial definitively established the role for beta-blockade in such patients.

Per the 2013 ACCF/AHA guidelines, “use of one of the three beta blockers proven to reduce mortality (e.g. bisoprolol, carvedilol, and sustained-release metoprolol succinate) is recommended for all patients with current or prior symptoms of HFrEF, unless contraindicated.”

Please note that there are two COPERNICUS trials. This is the first reported study (NEJM 2001) which reports only the mortality and mortality + hospitalization results, again in the context of a highly anticipated trial that was terminated early due to mortality benefit. A year later, the full results were published in Circulation, which described findings such as a decreased number of hospitalizations, fewer total hospitalization days, fewer days hospitalized for CHF, improved subjective scores, and fewer serious adverse events (e.g. sudden death, cardiogenic shock, VT) in the carvedilol arm.

Further Reading/References:
1. 2013 ACCF/AHA Guideline for the Management of Heart Failure
2. 2017 ACC/AHA/HFSA Focused Update of the 2013 ACCF/AHA Guideline for the Management of Heart Failure
3. COPERNICUS, 2002 Circulation version
4. Wiki Journal Club (describes 2001 NEJM, cites 2002 Circulation)
5. 2 Minute Medicine (describes and cites 2002 Circulation)

Summary by Duncan F. Moore, MD

Week 18 – Early Palliative Care in NSCLC

“Early Palliative Care for Patients with Metastatic Non-Small-Cell Lung Cancer”

N Engl J Med. 2010 Aug 19;363(8):733-42 [free full text]

Ideally, palliative care improves a patient’s quality of life while facilitating appropriate usage of healthcare resources. However, initiating palliative care late in a disease course or in the inpatient setting may limit these beneficial effects. This 2010 study by Temel et al. sought to demonstrate benefits of early integrated palliative care on patient-reported quality-of-life (QoL) outcomes and resource utilization.

The study enrolled outpatients with metastatic NSCLC diagnosed < 8 weeks ago and ECOG performance status 0-2 and randomized them to either “early palliative care” (met with palliative MD/ARNP within 3 weeks of enrollment and at least monthly afterward) or to standard oncologic care. The primary outcome was the change in Trial Outcome Index (TOI) from baseline to 12 weeks.

TOI = sum of the lung cancer, physical well-being, and functional well-being subscales of the Functional Assessment of Cancer Therapy­–Lung (FACT-L) scale (scale range 0-84, higher score = better function)

Secondary outcomes included:

  1. change in FACT-L score at 12 weeks (scale range 0-136)
  2. change in lung cancer subscale of FACT-L at 12 weeks (scale range 0-28)
  3. “aggressive care,” meaning one of the following: chemo within 14 days before death, lack of hospice care, or admission to hospice ≤ 3 days before death
  4. documentation of resuscitation preference in outpatient records
  5. prevalence of depression at 12 weeks per HADS and PHQ-9
  6. median survival

151 patients were randomized. Palliative-care patients (n=77) had a mean TOI increase of 2.3 points vs. a 2.3-point decrease in the standard-care group (n=73) (p=0.04). Median survival was 11.6 months in the palliative group vs. 8.9 months in the standard group (p=0.02). (See Figure 3 on page 741 for the Kaplan-Meier curve.) Prevalence of depression at 12 weeks per PHQ-9 was 4% in palliative patients vs. 17% in standard patients (p = 0.04). Aggressive end-of-life care was received in 33% of palliative patients vs. 53% of standard patients (p=0.05). Resuscitation preferences were documented in 53% of palliative patients vs. 28% of standard patients (p=0.05). There was no significant change in FACT-L score or lung cancer subscale score at 12 weeks.

Implication/Discussion:
Early palliative care in patients with metastatic non-small cell lung cancer improved quality of life and mood, decreased aggressive end-of-life care, and improved survival. This is a landmark study, both for its quantification of the QoL benefits of palliative intervention and for its seemingly counterintuitive finding that early palliative care actually improved survival.

The authors hypothesized that the demonstrated QoL and mood improvements may have led to the increased survival, as prior studies had associated lower QoL and depressed mood with decreased survival. However, I find more compelling their hypotheses that “the integration of palliative care with standard oncologic care may facilitate the optimal and appropriate administration of anticancer therapy, especially during the final months of life” and earlier referral to a hospice program may result in “better management of symptoms, leading to stabilization of [the patient’s] condition and prolonged survival.”

In practice, this study and those that followed have further spurred the integration of palliative care into many standard outpatient oncology workflows, including features such as co-located palliative care teams and palliative-focused checklists/algorithms for primary oncology providers. Of note, in the inpatient setting, a recent meta-analysis concluded that early hospital palliative care consultation was associated with a $3200 reduction in direct hospital costs ($4250 in subgroup of patients with cancer).

Further Reading/References:
1. ClinicalTrials.gov
2. Wiki Journal Club
3. Profile of first author Dr. Temel
4. “Economics of Palliative Care for Hospitalized Adults with Serious Illness: A Meta-analysis” JAMA Internal Medicine (2018)
5. UpToDate, “Benefits, services, and models of subspecialty palliative care”

Summary by Duncan F. Moore, MD