Week 48 – SYMPLICITY HTN-3

“A Controlled Trial of Renal Denervation for Resistant Hypertension”

N Engl J Med. 2014 Apr 10;370(15):1393-401 [free full text]

Approximately 10% of patients with hypertension have resistant hypertension (SBP > 140 despite adherence to three maximally tolerated doses of antihypertensives, including a diuretic). Evidence suggests that the sympathetic nervous system plays a large role in such cases, so catheter-based radiofrequency ablation of the renal arteries (renal denervation therapy) was developed as a potential treatment for resistant HTN. The 2010 SYMPLICITY HTN-2 trial was a small (n=106), non-blinded, randomized trial of renal denervation vs. continued care with oral antihypertensives that demonstrated a remarkable 30-mmHg greater decrease in SBP with renal denervation. Thus the 2014 SYMPLICITY HTN-3 trial was designed to evaluate the efficacy of renal denervation in a single-blinded trial with a sham-procedure control group.

The trial enrolled adults with resistant HTN with SBP ≥ 160 despite adherence to 3+ maximized antihypertensive drug classes, including a diuretic. (Pertinent exclusion criteria included secondary hypertension, renal artery stenosis > 50%, prior renal artery intervention.) Patients were randomized to either renal denervation with the Symplicity (Medtronic) radioablation catheter or to renal angiography only (sham procedure). The primary outcome was the mean change in office systolic BP from baseline at 6 months. (The examiner was blinded to intervention.) The secondary outcome was the change in mean 24-hour ambulatory SBP at 6 months. The primary safety endpoint was a composite of death, ESRD, embolic event with end-organ damage, renal artery or other vascular complication, hypertensive crisis within 30 days, or new renal artery stenosis of > 70%.

535 patients were randomized. On average, patients were receiving five antihypertensive medications. There was no significant difference in reduction of SBP between the two groups at 6 months. ∆SBP was -14.13 ± 23.93 mmHg in the denervation group vs. -11.74 ± 25.94 mmHg in the sham-procedure group for a between-group difference of -2.39 mmHg (95% CI -6.89 to 2.12, p = 0.26 with a superiority margin of 5 mmHg). The change in 24-hour ambulatory SBP at 6 months was -6.75 ± 15.11 mmHg in the denervation group vs. -4.79 ± 17.25 mmHg in the sham-procedure group for a between-group difference of -1.96 mmHg (95% CI -4.97 to 1.06, p = 0.98 with a superiority margin of 2 mmHg). There was no significant difference in the prevalence of the composite safety endpoint at 6 months with 4.0% of the denervation group and 5.8% of the sham-procedure group reaching the endpoint (percentage-point difference of -1.9, 95% CI -6.0 to 2.2).

In patients with resistant hypertension, renal denervation therapy provided no reduction in SBP at 6-month follow-up relative to a sham procedure.

This trial was an astounding failure for Medtronic and its Symplicity renal denervation radioablation catheter. The magnitude of the difference in results between the non-blinded, no-sham-procedure SYMPLICITY HTN-2 trial and this patient-blinded, sham-procedure-controlled trial is likely a product of 1) a marked placebo effect of procedural intervention, 2) Hawthorne effect in the non-blinded trial, and 3) regression toward the mean (patients were enrolled based on unusually high BP readings that over the course of the trial declined to reflect a lower true baseline).

Currently, there is no role for renal denervation therapy in the treatment of HTN (resistant or otherwise). However, despite the results of SYMPLICITY HTN-3, other companies and research groups are assessing the role of different radioablation catheters in patients with low-risk essential HTN and with resistant HTN. (For example, see https://www.ncbi.nlm.nih.gov/pubmed/29224639.)

Further Reading/References:
1. NephJC, SYMPLICITY HTN-3
2. UpToDate, “Treatment of resistant hypertension,” heading “Renal nerve denervation”

Summary by Duncan F. Moore, MD

Week 47 – STOPAH

“Prednisolone or Pentoxifylline for Alcohol Hepatitis”

aka the Steroids or Pentoxifylline for Alcoholic Hepatitis (STOPAH) trial

N Engl J Med. 2015 Apr 23;372(17):1619-28. [free full text]

Severe alcoholic hepatitis is associated with short-term mortality as high as 30%. Treatment of alcoholic hepatitis with corticosteroids has been extensively studied and debated. Prior to this 2010 study, an analysis of the five largest studies of glucocorticoid treatment in alcoholic hepatitis concluded that there was a significant mortality benefit at 28 days among patients with severe disease. Similarly, the nonselective phosphodiesterase inhibitor pentoxifylline has been evaluated in alcoholic hepatitis. One of four RCTs showed a significant benefit, but two meta-analyses have not concluded that there is any benefit. The authors of the 2010 STOPAH trial sought to evaluate both therapies compared to placebos in a 2-by-2 factorial design.

The trial enrolled adults with a clinical diagnosis of alcoholic hepatitis, average alcohol consumption > 80 gm/day in men or 60 gm/day in women, total bilirubin > 4.7mg/dL, and a Maddrey discriminant function ≥ 32 [https://www.mdcalc.com/maddreys-discriminant-function-alcoholic-hepatitis]. Patients were randomized to one of the following four groups for 28 days of treatment.

      1. prednisolone-matched placebo daily + pentoxifylline-matched placebo TID
      2. prednisolone 40mg daily + pentoxifylline-matched placebo TID
      3. prednisolone-matched placebo daily + pentoxifylline 400mg TID
      4. prednisolone 40mg placebo daily + pentoxifylline 400mg TID

The primary outcome was 28-day mortality. The major secondary outcome was mortality or liver transplant at 90 days and at 1 year.

Regarding randomization of the 1103 patients, 276 were randomized to placebo-placebo, 277 to prednisolone-placebo, 276 to pentoxifylline-placebo, and 274 to prednisolone-pentoxifylline. The trial was stopped early due to “limitations on funding.” However, all enrolled patients completed at least 28 days of follow-up. 33 patients were unable to complete 90-day and 1-year follow-up due to termination of the trial.

At 28 days, 45 of 269 (17%) of placebo-placebo patients, 38 of 266 (14%) of prednisolone-placebo patients, 50 of 258 (19%) of pentoxifylline-placebo patients, and 35 of 260 (13%) of prednisolone-pentoxifylline patients had died. The odds ratio for 28-day mortality among patients treated with prednisolone was 0.72 (95% CI 0.52-1.01, p = 0.06), and the odds ratio for patients treated with pentoxifylline was 1.07 (95% CI 0.77-1.49, p = 0.69).

Similarly, neither treatment was found to influence 90-day or 1-year mortality or liver transplantation. (See Table 2.) Infection occurred in 13% of patients who received prednisolone versus 7% of patients who did not receive prednisolone.

Implication/Discussion:
In patients with severe alcoholic hepatitis, neither prednisolone nor pentoxifylline reduced morality risk at 28 days. Additionally, neither drug reduced the combined secondary endpoint of mortality or liver transplantation at 90 days or 1 year.

This was a well-designed, randomized, double-blind, double-placebo-controlled trial. A notable limitation was this trial’s reliance on the clinical diagnosis of alcohol hepatitis, rather than tissue diagnosis. This may have reduced the power of the trial with respect to detecting a treatment effect. Contemporary authors also noted that harm may have come to study patients due to a lack of tapering of prednisolone at the end of the 28 days of treatment.

A 2015 meta-analysis that included the STOPAH trial concluded that prednisolone treatment reduced 28-day mortality.

Despite the negative results of this specific trial, corticosteroid treatment has remained a mainstay of the treatment of severe alcoholic hepatitis.

The generally accepted practice, as summarized by UpToDate, is treatment with prednisolone 40mg PO daily for 28 days in patients with discriminant function ≥ 32. (Prednisolone is preferred over prednisone because prednisone requires conversion in the liver to its active form prednisolone, and such conversion can be impaired in liver dysfunction.) Therapy should be terminated early after 7 days if patients fail to show improvement (either by parameters such as bilirubin or discriminant function or by improvement in the Lille score).

Further Reading/References:
1. STOPAH @ Wiki Journal Club
2. STOPAH @ 2 Minute Medicine
3. UpToDate, “Management and prognosis of alcoholic hepatitis”
4. American College of Gastroenterology, “ACG Clinical Guideline: Alcoholic Liver Disease” (2018)
5. European Association for Study of the Liver (EASL), “EASL Clinical Practice Guidelines: Management of Alcoholic Liver Disease” (2012)

Summary by Duncan F. Moore, MD

Image Credit: University of Alabama at Birmingham Department of Pathology, CC BY-SA 2.5, via Wikimedia Commons

Week 46 – ACCORD

“Effects of Intensive Glucose Lowering in Type 2 Diabetes”

by the Action to Control Cardiovascular Risk in Diabetes (ACCORD) Study Group

N Engl J Med. 2008 Jun 12;358(24):2545-59. [free full text]

We all treat type 2 diabetes mellitus (T2DM) on a daily basis, and we understand that untreated T2DM places patients at increased risk for adverse micro- and macrovascular outcomes. Prior to the 2008 ACCORD study, prospective epidemiological studies had noted a direct correlation between increased hemoglobin A1c values and increased risk of cardiovascular events. This correlation implied that treating T2DM to lower A1c levels would result in the reduction of cardiovascular risk. The ACCORD trial was the first large RCT to evaluate this specific hypothesis through comparison of events in two treatment groups – aggressive and less aggressive glucose management.

The trial enrolled patients with T2DM with A1c ≥ 7.5% and either age 40-79 with prior cardiovascular disease or age 55-79 with “anatomical evidence of significant atherosclerosis,” albuminuria, LVH, or ≥ 2 additional risk factors for cardiovascular disease (dyslipidemia, HTN, current smoker, or obesity). Notable exclusion criteria included “frequent or recent serious hypoglycemic events,” an unwillingness to inject insulin, BMI > 45, Cr > 1.5, or “other serious illness.” Patients were randomized to either intensive therapy targeting A1c to < 6.0% or to standard therapy targeting A1c 7.0-7.9%. The primary outcome was a composite first nonfatal MI or nonfatal stroke and death from cardiovascular causes. Reported secondary outcomes included all-cause mortality, severe hypoglycemia, heart failure, motor vehicle accidents in which the patient was the driver, fluid retention, and weight gain.

10,251 patients were randomized. The average age was 62, the average duration of T2DM was 10 years, and the average A1c was 8.1%. Both groups lowered their median A1c quickly, and median A1c values of the two groups separated rapidly within the first four months. (See Figure 1.) The intensive-therapy group had more exposure to antihyperglycemics of all classes. See Table 2.) Drugs were more frequently added, removed, or titrated in the intensive-therapy group (4.4 times per year versus 2.0 times per year in the standard-therapy group). At one year, the intensive-therapy group had a median A1c of 6.4% versus 7.5% in the standard-therapy group.

The primary outcome of MI/stroke/cardiovascular death occurred in 352 (6.9%) intensive-therapy patients versus 371 (7.2%) standard-therapy patients (HR 0.90, 95% CI 0.78-1.04, p = 0.16).

The trial was stopped early at a mean follow-up of 3.5 years due to increased all-cause mortality in the intensive-therapy group. 257 (5.0%) of the intensive-therapy patients died, but only 203 (4.0%) of the standard-therapy patients died (HR 1.22, 95% CI 1.01-1.46, p = 0.04). For every 95 patients treated with intensive therapy for 3.5 years, one extra patient died. Death from cardiovascular causes was also increased in the intensive-therapy group (HR 1.35, 95% CI 1.04-1.76, p = 0.02).

Regarding additional secondary outcomes, the intensive-therapy group had higher rates of hypoglycemia, weight gain, and fluid retention than the standard-therapy group. (See Table 3.) There were no group differences in rates of heart failure or motor vehicle accidents in which the patient was the driver.

Intensive glucose control of T2DM increased all-cause mortality and did not alter the risk of cardiovascular events. This harm was previously unrecognized.

The authors performed sensitivities analyses, including non-prespecified analyses, such as group differences in use of drugs like rosiglitazone, and they were unable to find an explanation for this increased mortality.

The target A1c level in T2DM remains a nuanced, patient-specific goal. Aggressive management may lead to improved microvascular outcomes, but it must be weighed against the risk of hypoglycemia. As summarized by UpToDate, while long-term data from the UKPDS suggests there may be a macrovascular benefit to aggressive glucose management early in the course of T2DM, the data from ACCORD suggest strongly that, in patients with longstanding T2DM and additional risk factors for cardiovascular disease, such management increases mortality.

The 2019 American Diabetes Association guidelines suggest that “a reasonable A1c goal for many nonpregnant adults is < 7%.” More stringent goals (< 6.5%) may be appropriate if they can be achieved without significant hypoglycemia or polypharmacy, and less stringent goals (< 8%) may be appropriate for patients “with a severe history of hypoglycemia, limited life expectancy, advanced microvascular or macrovascular complications…”

Of note, ACCORD also simultaneously cross-enrolled its patients in studies of intensive blood pressure management and adjunctive lipid management with fenofibrate. See this 2010 NIH press release and the links below for more information.

ACCORD Blood Pressure – NEJM, Wiki Journal Club

ACCORD Lipids – NEJM, Wiki Journal Club

Further Reading/References:
1. ACCORD @ Wiki Journal Club
2. ACCORD @ 2 Minute Medicine
3. American Diabetes Association – “Glycemic Targets.” Diabetes Care (2019).
4. “Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomised trial.” Lancet (2010).

Summary by Duncan F. Moore, MD

Week 45 – COURAGE

“Optimal Medical Therapy with or without PCI for Stable Coronary Disease”

by the Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) Trial Research Group

N Engl J Med. 2007 Apr 12;356(15):1503-16 [free full text]

The optimal medical management of stable coronary artery disease has been well-described. However, prior to the 2007 COURAGE trial, the role of percutaneous coronary intervention (PCI) in the initial management of stable coronary artery disease was unclear. It was known that PCI improved angina symptoms and short-term exercise performance in stable disease, but its mortality benefit and reduction of future myocardial infarction and ACS were unknown.

The trial recruited patients with stable coronary artery disease. (See paper for inclusion/exclusion criteria. Disease had to be sufficiently and objectively severe, but not too severe, and symptoms could not be sustained at the highest CCS grade.) Patients were randomized to either optimal medical management (including antiplatelet, anti-anginal, ACEi/ARB, and cholesterol-lowering therapy) and PCI or to optimal medical management alone. The primary outcome was a composite of all-cause mortality and non-fatal MI.

2287 patients were randomized. Both groups had similar baseline characteristics with the exception of a higher prevalence of proximal LAD disease in the medical-therapy group. Median duration of follow-up was 4.6 years in both groups. Death or non-fatal MI occurred in 18.4% of the PCI group and in 17.8% of the medical-therapy group (p = 0.62). Death, non-fatal MI, or stroke occurred in 20.0% of the PCI group and 19.5% of the medical-therapy group (p = 0.62). Hospitalization for ACS occurred in 12.4% of the PCI group and 11.8% of the medical-therapy group (p = 0.56). Revascularization during follow-up was performed in 21.1% of the PCI group but in 32.6% of the medical-therapy group (HR 0.60, 95% CI 0.51–0.71, p < 0.001). Finally, 66% of PCI patients were free of angina at 1-year follow-up compared with 58% of medical-therapy patients (p < 0.001). Rates were 72% and 67% at 3 years (p = 0.02) and 72% and 74% at five years (not significant).

Thus, in the initial management of stable coronary artery disease, PCI in addition to optimal medical management provided no mortality benefit over optimal medical management alone. However, initial management with PCI did provide a time-limited improvement in angina symptoms.

As the authors of COURAGE nicely summarize on page 1512, the atherosclerotic plaques of ACS and stable CAD are different. Vulnerable, ACS-prone plaques have thin caps and spread outward along the wall of the coronary artery, as opposed to stable CAD plaques, which have thick fibrous caps and are associated with inward-directed remodeling that narrows the artery lumen (and cause reliable angina symptoms and luminal narrowing on coronary angiography).

Notable limitations of this study:

      • Generalizability was limited due to the population, which was largely male, white, and 42% came from VA hospitals.
      • Drug-eluting stents were not clinically available until the last 6 months of the study, so most stents placed were bare metal.

Later meta-analyses were weakly suggestive of an association of PCI with improved all-cause mortality. It is thought that there may be a subset of patients with stable CAD who achieve a mortality benefit from PCI.

The 2017 ORBITA trial made headlines and caused sustained controversy when it demonstrated in a randomized trial that, in the context of optimal medical therapy, PCI did not increase exercise time more than did a sham PCI. Take note of the relatively savage author’s reply to commentary regarding the trial. See blog discussion here. The ORBITA-2 trial is currently underway.

The ongoing ISCHEMIA trial is both eagerly awaited and involved in a degree of controversy after a recent change in endpoints.

It is important to note that all of the above discussions assume that the patient does not have specific coronary artery anatomy (e.g. left main disease, multi-vessel disease with decreased LVEF) in which initial CABG would provide a mortality benefit. Finally, PCI should be considered in patients whose physical activity is limited by angina symptoms despite optimal medical therapy.

Further Reading:
1. COURAGE @ Wiki Journal Club
2. COURAGE @ 2 Minute Medicine
3. Canadian Cardiovascular Society grading of angina pectoris
4. ORBITA-2 @ ClinicalTrials.gov
5. ISCHEMIA @ ClinicalTrials.gov
6. Discussion re: ISCHEMIA trial changes @ CardioBrief

Summary by Duncan F. Moore, MD

Image Credit: National Institutes of Health, US Public Domain, via Wikimedia Commons

Week 44 – National Lung Screening Trial (NLST)

“Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening”

by the National Lung Cancer Screening Trial (NLST) Research Team

N Engl J Med. 2011 Aug 4;365(5):395-409 [free full text]

Despite a reduction in smoking rates in the United States, lung cancer remains the number one cause of cancer death in the United States as well as worldwide. Earlier studies of plain chest radiography for lung cancer screening demonstrated no benefit, and in 2002 the National Lung Screening Trial (NLST) was undertaken to determine whether then recent advances in CT technology could lead to an effective lung cancer screening method.

The study enrolled adults age 55-74 with 30+ pack-years of smoking (if former smokers, they must have quit within the past 15 years). Patients were randomized to either the intervention of three annual screenings for lung cancer with low-dose CT or to the comparator/control group to receive three annual screenings for lung cancer with PA chest radiograph. The primary outcome was mortality from lung cancer. Notable secondary outcomes were all-cause mortality and the incidence of lung cancer.

53,454 patients were randomized, and both groups had similar baseline characteristics. The low-dose CT group sustained 247 deaths from lung cancer per 100,000 person-years, whereas the radiography group sustained 309 deaths per 100,000 person-years. A relative reduction in rate of death by 20.0% was seen in the CT group (95% CI 6.8 – 26.7%, p = 0.004). The number needed to screen with CT to prevent one lung cancer death was 320. There were 1877 deaths from any cause in the CT group and 2000 deaths in the radiography group, so CT screening demonstrated a risk reduction of death from any cause of 6.7% (95% CI 1.2% – 13.6%, p = 0.02). Incidence of lung cancer in the CT group was 645 per 100,000 person-years and 941 per 100,000 person-years in the radiography group (RR 1.13, 95% CI 1.03 – 1.23).

Lung cancer screening with low-dose CT scan in high-risk patients provides a significant mortality benefit. This trial was stopped early because the mortality benefit was so high. The benefit was driven by the reduction in deaths attributed to lung cancer, and when deaths from lung cancer were excluded from the overall mortality analysis, there was no significant difference among the two arms. Largely on the basis of this study, the 2013 USPSTF guidelines for lung cancer screening recommend annual low-dose CT scan in patients who meet NLST inclusion criteria. However, it must be noted that, even in the “ideal” circumstances of this trial performed at experienced centers, 96% of abnormal CT screening results in this trial were actually false positives. Of all positive results, 11% led to invasive studies.

Per UpToDate, since NSLT, there have been several European low-dose CT screening trials published. However, all but one (NELSON) appear to be underpowered to demonstrate a possible mortality reduction. Meta-analysis of all such RCTs could allow for further refinement in risk stratification, frequency of screening, and management of positive screening findings.

No randomized trial has ever demonstrated a mortality benefit of plain chest radiography for lung cancer screening. The Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial tested this modality vs. “community care,” and because the PLCO trial was ongoing at the time of creation of the NSLT, the NSLT authors trial decided to compare their intervention (CT) to plain chest radiography in case the results of plain chest radiography in PLCO were positive. Ultimately, they were not.

Further Reading:
1. USPSTF Guidelines for Lung Cancer Screening (2013)
2. NLST @ ClinicalTrials.gov
3. NLST @ Wiki Journal Club
4. NLST @ 2 Minute Medicine
5. UpToDate, “Screening for lung cancer”

Summary by Duncan F. Moore, MD

Image Credit: Yale Rosen, CC BY-SA 2.0, via Wikimedia Commons

Week 42 – BeSt

“Clinical and Radiographic Outcomes of Four Different Treatment Strategies in Patients with Early Rheumatoid Arthritis (the BeSt Study).”

Arthritis & Rheumatism. 2005 Nov;52(11):3381-3390. [free full text]

Rheumatoid arthritis (RA) is among the most prevalent of the rheumatic diseases with a lifetime prevalence of 3.6% in women and 1.7% in men [1]. It is a chronic, systemic, inflammatory autoimmune disease of variable clinical course that can severely impact physical functional status and even mortality. Over the past 30 years, as the armamentarium of therapies for RA has exploded, there has been increased debate about the ideal initial therapy. The BeSt (Dutch: Behandel-Strategieën “treatment strategies”) trial was designed to compare, according to the authors, four of “the most frequently used and discussed strategies.” Regimens incorporating traditional disease-modifying antirheumatic drugs (DMARDs), such as methotrexate, and newer therapies, such as TNF-alpha inhibitors, were compared directly.

The trial enrolled 508 DMARD-naïve patients with early rheumatoid arthritis. Pertinent exclusion criteria included history of cancer and pre-existing laboratory abnormalities or comorbidities (e.g. elevated creatinine or ALT, alcohol abuse, pregnancy or desire to conceive, etc.) that would preclude the use of various DMARDs. Patients were randomized to one of four treatment groups. Within each regimen, the Disease Activity Score in 44 joints (DAS-44) was assessed q3 months, and, if > 2.4, the medication regimen was uptitrated to the next step within the treatment group.

Four Treatment Groups

  1. Sequential monotherapy: methotrexate (MTX) 15mg/week, uptitrated PRN to 25-30mg/week. If insufficient control, the following sequence was pursued: sulfasalazine (SSZ) monotherapy, leflunomide monotherapy, MTX + infliximab, gold with methylprednisolone, MTX + cyclosporin A (CSA) + prednisone
  2. Step-up combination therapy: MTX 15mg/week, uptitrated PRN to 25-30mg/week. If insufficient control, SSZ was added, followed by hydroxychloroquine (HCQ), followed by prednisone. If patients failed to respond to those four drugs, they were switched to MTX + infliximab, then MTX + CSA + prednisone, and finally to leflunomide.
  3. Initial combination therapy with tapered high-dose prednisone: MTX 7.5 mg/week + SSZ 2000 mg/day + prednisone 60mg/day (tapered in 7 weeks to 7.5 mg/day). If insufficient control, MTX was uptitrated to 25-30 mg/week. Next, combination would be switched to MTX + CSA + prednisone, then MTX + infliximab, then leflunomide monotherapy, gold with methylprednisolone, and finally azathioprine with prednisone.
  4. Initial combination therapy with infliximab: MTX 25-30 mg/week + infliximab 3 mg/kg at weeks 0, 2, 6, and q8 weeks thereafter. There was a protocol for infliximab-dose uptitration starting at 3 months. If insufficient control on MTX and infliximab 10 mg/kg, patients were switched to SSZ, then leflunomide, then MTX + CSA + prednisone, then gold + methylprednisolone, and finally AZA with prednisone.

Once clinical response was adequate for at least 6 months, there was a protocol for tapering the drug regimen.

The primary endpoints were: 1) functional ability per the Dutch version of the Health Assessment Questionnaire (D-HAQ), collected by a blinded research nurse q3 months and 2) radiographic joint damage per the modified Sharp/Van der Heijde score (SHS). Pertinent secondary outcomes included DAS-44 score and laboratory evidence of treatment toxicity.

At randomization, enrolled RA patients had a median duration of symptoms of 23 weeks and median duration since diagnosis of RA of 2 weeks. Mean DAS-44 was 4.4 ± 0.9. 72% of patients had erosive disease. Mean D-HAQ score at 3 months was 1.0 in groups 1 and 2 and 0.6 in groups 3 and 4 (p < 0.001 for groups 1 and 2 vs. groups 3 and 4; paired tests otherwise insignificant). Mean D-HAQ at 1 year was 0.7 in groups 1 and 2 and 0.5 in groups 3 and 4 (p = 0.010 for group 1 vs. group 3, p = 0.003 for group 1 vs. group 4; paired tests otherwise insignificant). At 1 year, patients in group 3 or 4 had less radiographic progression in joint damage per SHS than patients in group 1 or 2. Median increases in SHS were 2.0, 2.5., 1.0, and 0.5 in groups 1-4, respectively (p = 0.003 for group 1 vs. group 3, p < 0.001 for group 1 versus group 4, p = 0.007 for group 2 vs. group 3, p < 0.001 for group 2 vs. group 4). Regarding DAS-44 score: low disease activity (DAS-44 ≤ 2.4) at 1 year was reached in 53%, 64%, 71%, 74% of groups 1-4, respectively (p = 0.004 for group 1 vs. group 3, p = 0.001 for group 1 vs. group 4, p not significant for other comparisons). There were no group differences in prevalence of adverse effects.

Overall, among patients with early RA, initial combination therapy that included either prednisone (group 3) or infliximab (group 4) resulted in better functional and radiographic improvement than did initial therapy with sequential monotherapy (group 1) or step-up combination therapy (group 2). In the discussion, the authors note that given the treatment group differences in radiographic progression of disease, “starting therapy with a single DMARD would be a missed opportunity in a considerable number of patients.” Contemporary commentary by Weisman notes that “the authors describe both an argument and a counterargument arising from their observations: aggressive treatment with combinations of expensive drugs would ‘overtreat’ a large proportion of patients, yet early suppression of disease activity may have an important influence on subsequent long‐term disability and damage.”

Fourteen years later, it is a bit difficult to place the specific results of this trial in our current practice. Its trial design is absolutely byzantine and compares the 1-year experience of a variety of complex protocols that theoretically have substantial eventual potential overlap. Furthermore, it is difficult to assess if the relatively small group differences in symptom (D-HAQ) and radiographic (SHS) scales were truly clinically significant even if they were statistically significant. The American College of Rheumatology 2015 Guideline for the Treatment of Rheumatoid Arthritis synthesized the immense body of literature that came before and after the BeSt study and ultimately gave a variety of conditional statements about the “best practice” treatment of symptomatic early RA. (See Table 2 on page 8.) The recommendations emphasized DMARD monotherapy as the initial strategy but in the specific setting of a treat-to-target strategy. They also recommended escalation to combination DMARDs or biologics in patients with moderate or high disease activity despite DMARD monotherapy.

References / Additional Reading:
1. “The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases.” Arthritis Rheum. 2011 Mar;63(3):633-9. [https://www.ncbi.nlm.nih.gov/pubmed/21360492]
2. BeSt @ Wiki Journal Club
3. “Progress toward the cure of rheumatoid arthritis? The BeSt study.” Arthritis Rheum. 2005 Nov;52(11):3326-32.
4. “Review: treat to target in rheumatoid arthritis: fact, fiction, or hypothesis?” Arthritis Rheumatol. 2014 Apr;66(4):775-82. [https://www.ncbi.nlm.nih.gov/pubmed/24757129]
5. “2015 American College of Rheumatology Guideline for the Treatment of Rheumatoid Arthritis” Arthritis Rheumatol. 2016 Jan;68(1):1-26
6. RheumDAS calculator

Summary by Duncan F. Moore, MD

Image Credit: Braegel, CC BY 3.0, via Wikimedia Commons

Week 39 – POISE

“Effects of extended-release metoprolol succinate in patients undergoing non-cardiac surgery: a randomised controlled trial”

Lancet. 2008 May 31;371(9627):1839-47. [free full text]

Non-cardiac surgery is commonly associated with major cardiovascular complications. It has been hypothesized that perioperative beta blockade would reduce such events by attenuating the effects of the intraoperative increases in catecholamine levels. Prior to the 2008 POISE trial, small- and moderate-sized trials had revealed inconsistent results, alternately demonstrating benefit and non-benefit with perioperative beta blockade. The POISE trial was a large RCT designed to assess the benefit of extended-release metoprolol succinate (vs. placebo) in reducing major cardiovascular events in patients of elevated cardiovascular risk.

The trial enrolled patients age 45+ undergoing non-cardiac surgery with estimated LOS 24+ hrs and elevated risk of cardiac disease, meaning: either 1) hx of CAD, 2) peripheral vascular disease, 3) hospitalization for CHF within past 3 years, 4) undergoing major vascular surgery, 5) or any three of the following seven risk criteria: undergoing intrathoracic or intraperitoneal surgery, hx CHF, hx TIA, hx DM, Cr > 2.0, age 70+, or undergoing urgent/emergent surgery.

Notable exclusion criteria: HR < 50, 2nd or 3rd degree heart block, asthma, already on beta blocker, prior intolerance of beta blocker, hx CABG within 5 years and no cardiac ischemia since

Intervention: metoprolol succinate (extended-release) 100mg PO starting 2-4 hrs before surgery, additional 100mg at 6-12 hrs postoperatively, followed by 200mg daily for 30 days. (Patients unable to take PO meds postoperatively were given metoprolol infusion.)

Comparison: placebo PO / IV at same frequency as metoprolol arm

Outcome:
Primary – composite of cardiovascular death, non-fatal MI, and non-fatal cardiac arrest at 30 days

Secondary (at 30 days)

        • cardiovascular death
        • non-fatal MI
        • non-fatal cardiac arrest
        • all-cause mortality
        • non-cardiovascular death
        • MI
        • cardiac revascularization
        • stroke
        • non-fatal stroke
        • CHF
        • new, clinically significant atrial fibrillation
        • clinically significant hypotension
        • clinically significant bradycardia

Pre-specified subgroup analyses of primary outcome:

Results:
9298 patients were randomized. However, fraudulent activity was detected at participating sites in Iran and Colombia, and thus 947 patients from these sites were excluded from the final analyses. Ultimately, 4174 were randomized to the metoprolol group, and 4177 were randomized to the placebo group. There were no significant differences in baseline characteristics, pre-operative cardiac medications, surgery type, or anesthesia type between the two groups (see Table 1).

Regarding the primary outcome, metoprolol patients were less likely than placebo patients to experience the primary composite endpoint of cardiovascular death, non-fatal MI, and non-fatal cardiac arrest (HR 0.84, 95% CI 0.70-0.99, p = 0.0399). See Figure 2A for the relevant Kaplan-Meier curve. Note that the curves separate distinctly within the first several days.

Regarding selected secondary outcomes (see Table 3 for full list), metoprolol patients were more likely to die from any cause (HR 1.33, 95% CI 1.03-1.74, p = 0.0317). See Figure 2D for the Kaplan-Meier curve for all-cause mortality. Note that the curves start to separate around day 10. Cause of death was analyzed, and the only group difference in attributable cause was an increased number of deaths due to sepsis or infection in the metoprolol group (data not shown). Metoprolol patients were more likely to sustain a stroke (HR 2.17, 95% CI 1.26-3.74, p = 0.0053) or a non-fatal stroke (HR 1.94, 95% CI 1.01-3.69, p = 0.0450). Of all patients who sustained a non-fatal stroke, only 15-20% made a full recovery. Metoprolol patients were less likely to sustain new-onset atrial fibrillation (HR 0.76, 95% CI 0.58-0.99, p = 0.0435) and less likely to sustain a non-fatal MI (HR 0.70, 95% CI 0.57-0.86, p = 0.0008). There were no group differences in risk of cardiovascular death or non-fatal cardiac arrest. Metoprolol patients were more likely to sustain clinically significant hypotension (HR 1.55, 95% CI 1.38-1.74, P < 0.0001) and clinically significant bradycardia (HR 2.74, 95% CI 2.19-3.43, p < 0.0001).

Subgroup analysis did not reveal any significant interaction with the primary outcome by RCRI, sex, type of surgery, or anesthesia type.

Implication/Discussion:
In patients with cardiovascular risk factors undergoing non-cardiac surgery, the perioperative initiation of beta blockade decreased the composite risk of cardiovascular death, non-fatal MI, and non-fatal cardiac arrest and increased the overall mortality risk and risk of stroke.

This study affirms its central hypothesis – that blunting the catecholamine surge of surgery is beneficial from a cardiac standpoint. (Most patients in this study had an RCRI of 1 or 2.) However, the attendant increase in all-cause mortality is dramatic. The increased mortality is thought to result from delayed recognition of sepsis due to masking of tachycardia. Beta blockade may also limit the physiologic hemodynamic response necessary to successfully fight a serious infection. In retrospective analyses mentioned in the discussion, the investigators state that they cannot fully explain the increased risk of stroke in the metoprolol group. However, hypotension attributable to beta blockade explains about half of the increased number of strokes.

Overall, the authors conclude that “patients are unlikely to accept the risks associated with perioperative extended-release metoprolol.”

A major limitation of this study is the fact that 10% of enrolled patients were discarded in analysis due to fraudulent activity at selected investigation sites. In terms of generalizability, it is important to remember that POISE excluded patients who were already on beta blockers.

Currently, per expert opinion at UpToDate, it is not recommended to initiate beta blockers preoperatively in order improve perioperative outcomes. POISE is an important piece of evidence underpinning the 2014 ACC/AHA Guideline on Perioperative Cardiovascular Evaluation and Management of Patients Undergoing Noncardiac Surgery, which includes the following recommendations regarding beta blockers:

      • Beta blocker therapy should not be started on the day of surgery (Class III – Harm, Level B)
      • Continue beta blockers in patients who are on beta blockers chronically (Class I, Level B)
      • In patients with intermediate- or high-risk preoperative tests, it may be reasonable to begin beta blockers
      • In patients with ≥ 3 RCRI risk factors, it may be reasonable to begin beta blockers before surgery
      • Initiating beta blockers in the perioperative setting as an approach to reduce perioperative risk is of uncertain benefit in those with a long-term indication but no other RCRI risk factors
      • It may be reasonable to begin perioperative beta blockers long enough in advance to assess safety and tolerability, preferably > 1 day before surgery

Further Reading/References:
1. Wiki Journal Club
2. 2 Minute Medicine
3. UpToDate, “Management of cardiac risk for noncardiac surgery”
4. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines.

Image Credit: Mark Oniffrey, CC BY-SA 4.0, via Wikimedia Commons

Summary by Duncan F. Moore, MD

Week 38 – Effect of Early vs. Deferred Therapy for HIV (NA-ACCORD)

“Effect of Early versus Deferred Antiretroviral Therapy for HIV on Survival”

N Engl J Med. 2009 Apr 30;360(18):1815-26 [free full text]

The optimal timing of initiation of antiretroviral therapy (ART) in asymptomatic patients with HIV has been a subject of investigation since the advent of antiretrovirals. Guidelines in 1996 recommended starting ART for all HIV-infected patients with CD4 count < 500, but over time provider concerns regarding resistance, medication nonadherence, and adverse effects of medications led to more restrictive prescribing. In the mid-2000s, guidelines recommended ART initiation in asymptomatic HIV patients with CD4 < 350. However, contemporary subgroup analysis of RCT data and other limited observational data suggested that deferring initiation of ART increased rates of progression to AIDS and mortality. Thus the NA-ACCORD authors sought to retrospectively analyze their large dataset to investigate the mortality effect of early vs. deferred ART initiation.

The study examined the cases of treatment-naïve patients with HIV and no hx of AIDS-defining illness evaluated during 1996-2005. Two subpopulations were analyzed retrospectively: CD4 count 351-500 and CD4 count 500+. No intervention was undertaken. The primary outcome was, within each CD4 sub-population, mortality in patients treated with ART within 6 months after the first CD4 count within the range of interest vs. mortality in patients for whom ART was deferred until the CD4 count fell below the range of interest.

8362 eligible patients had a CD4 count of 351-500, and of these, 2084 (25%) initiated ART within 6 months, whereas 6278 (75%) patients deferred therapy until CD4 < 351. 9155 eligible patients had a CD4 count of 500+, and of these, 2220 (24%) initiated ART within 6 months, whereas 6935 (76%) patients deferred therapy until CD4 < 500. In both CD4 subpopulations, patients in the early-ART group were older, more likely to be white, more likely to be male, less likely to have HCV, and less likely to have a history of injection drug use. Cause-of-death information was obtained in only 16% of all deceased patients. The majority of these deaths in both the early- and deferred-therapy groups were from non-AIDS-defining conditions.

In the subpopulation with CD4 351-500, there were 137 deaths in the early-therapy group vs. 238 deaths in the deferred-therapy group. Relative risk of death for deferred therapy was 1.69 (95% CI 1.26-2.26, p < 0.001) per Cox regression stratified by year. After adjustment for history of injection drug use, RR = 1.28 (95% CI 0.85-1.93, p = 0.23). In an unadjusted analysis, HCV infection was a risk factor for mortality (RR 1.85, p= 0.03). After exclusion of patients with HCV infection, RR for deferred therapy = 1.52 (95% CI 1.01-2.28, p = 0.04).

In the subpopulation with CD4 500+, there were 113 deaths in the early-therapy group vs. 198 in the deferred-therapy group. Relative risk of death for deferred therapy was 1.94 (95% CI 1.37-2.79, p < 0.001). After adjustment for history of injection drug use, RR = 1.73 (95% CI 1.08-2.78, p = 0.02). Again, HCV infection was a risk factor for mortality (RR = 2.03, p < 0.001). After exclusion of patients with HCV infection, RR for deferred therapy = 1.90 (95% CI 1.14-3.18, p = 0.01).

Thus, in a large retrospective study, the deferred initiation of antiretrovirals in asymptomatic HIV infection was associated with higher mortality.

This was the first retrospective study of early initiation of ART in HIV that was large enough to power mortality as an endpoint while controlling for covariates. However, it is limited significantly by its observational, non-randomized design that introduced substantial unmeasured confounders. A notable example is the absence of socioeconomic confounders (e.g. insurance status). Perhaps early-initiation patients were more well-off, and their economic advantage was what drove the mortality benefit rather than the early initiation of ART. This study also made no mention of the tolerability of ART or adverse reactions to it.

In the years that followed this trial, NIH and WHO consensus guidelines shifted the trend toward earlier treatment of HIV. In 2015, the INSIGHT START trial (the first large RCT of immediate vs. deferred ART) showed a definitive mortality benefit of immediate initiation of ART in patients with CD4 500+. Since that time, per UpToDate, the standard of care has been to treat “essentially all” HIV-infected patients with ART.

Further Reading/References:
1. Wiki Journal Club
2. 2 Minute Medicine
3. INSIGHT START (2015), Pubmed, NEJM PDF
4. UpToDate, “When to initiate antiretroviral therapy in HIV-infected patients”

Summary by Duncan F. Moore, MD

Image Credit: Sigve, CC0 1.0, via WikiMedia Commons

Week 37 – LOTT

“A Randomized Trial of Long-Term Oxygen for COPD with Moderate Desaturation”

by the Long-Term Oxygen Treatment Trial (LOTT) Research Group

N Engl J Med. 2016 Oct 27;375(17):1617-1627. [free full text]

The long-term treatment of severe resting hypoxemia (SpO2 < 89%) in COPD with supplemental oxygen has been a cornerstone of modern outpatient COPD management since its mortality benefit was demonstrated circa 1980. Subsequently, the utility of supplemental oxygen in COPD patients with moderate resting daytime hypoxemia (SpO2 89-93%) was investigated in trials in the 1990s; however, such trials were underpowered to assess mortality benefit. Ultimately, the LOTT trial was funded by the NIH and Centers for Medicare and Medicaid Services (CMS) primarily to determine if there was a mortality benefit to supplemental oxygen in COPD patients with moderate hypoxemia as well to analyze as numerous other secondary outcomes, such as hospitalization rates and exercise performance.

The LOTT trial was originally planned to enroll 3500 patients. However, after 7 months the trial had randomized only 34 patients, and mortality had been lower than anticipated. Thus in late 2009 the trial was redesigned to include broader inclusion criteria (now patients with exercise-induced hypoxemia could qualify) and the primary endpoint was broadened from mortality to a composite of time to first hospitalization or death.

The revised LOTT trial enrolled COPD patients with moderate resting hypoxemia (SpO2 89-93%) or moderate exercise-induced desaturation during the 6-minute walk test (SpO2 ≥ 80% for ≥ 5 minutes and < 90% for ≥ 10 seconds). Patients were randomized to either supplemental oxygen (24-hour oxygen if resting SpO2 89-93%, otherwise oxygen only during sleep and exercise if the desaturation occurred only during exercise) or to usual care without supplemental oxygen. Supplemental oxygen flow rate was 2 liters per minute and could be uptitrated by protocol among patients with exercise-induced hypoxemia. The primary outcome was time to composite of first hospitalization or death. Secondary outcomes included hospitalization rates, lung function, performance on 6-minute walk test, and quality of life.

368 patients were randomized to the supplemental-oxygen group and 370 to the no-supplemental-oxygen group. Of the supplemental-oxygen group, 220 patients were prescribed 24-hour oxygen support, and 148 were prescribed oxygen for use during exercise and sleep only. Median duration of follow-up was 18.4 months. Regarding the primary outcome, there was no group difference in time to death or first hospitalization (p = 0.52 by log-rank test). See Figure 1A. Furthermore, there were no treatment-group differences in the primary outcome among patients of the following pre-specified subgroups: type of oxygen prescription, “desaturation profile,” race, sex, smoking status, SpO2 nadir during 6-minute walk, FEV1, BODE  index, SF-36 physical-component score, BMI, or history of anemia. Patients with a COPD exacerbation in the 1-2 months prior to enrollment, age 71+ at enrollment, and those with lower Quality of Well-Being Scale score at enrollment all demonstrated benefit from supplemental O2, but none of these subgroup treatment effects were sustained when the analyses were adjusted for multiple comparisons. Regarding secondary outcomes, there were no treatment-group differences in rates of all-cause hospitalizations, COPD-related hospitalizations, or non-COPD-related hospitalizations, and there were no differences in change from baseline measures of quality of life, anxiety, depression, lung function, and distance achieved in 6-minute walk.

The LOTT trial presents compelling evidence that there is no significant benefit, mortality or otherwise, of oxygen supplementation in patients with COPD and either moderate hypoxemia at rest (SpO2 > 88%) or exercise-induced hypoxemia. Although this trial’s substantial redesign in its early course is noted, the trial still is our best evidence to date about the benefit (or lack thereof) of oxygen in this patient group. As acknowledged by the authors, the trial may have had significant selection bias in referral. (Many physicians did not refer specific patients for enrollment because “they were too ill or [were believed to have benefited] from oxygen.”) Another notable limitation of this study is that nocturnal oxygen saturation was not evaluated. The authors do note that “some patients with COPD and severe nocturnal desaturation might benefit from nocturnal oxygen supplementation.”

For further contemporary contextualization of the study, please see the excellent post at PulmCCM from 11/2016. Included in that post is a link to an overview and Q&A from the NIH regarding the LOTT study.

References / Additional Reading:
1. PulmCCM, “Long-term oxygen brought no benefits for moderate hypoxemia in COPD”
2. LOTT @ 2 Minute Medicine
3. LOTT @ ClinicalTrials.gov
4. McDonald, J.H. 2014. Handbook of Biological Statistics (3rd ed.). Sparky House Publishing, Baltimore, Maryland.
5. Centers for Medicare and Medicaid Services, “Certificate of Medical Necessity CMS-484– Oxygen”
6. Ann Am Thorac Soc. 2018 Dec;15(12):1369-1381. “Optimizing Home Oxygen Therapy. An Official American Thoracic Society Workshop Report.”

Summary by Duncan F. Moore, MD

Image Credit: Patrick McAleer, CC BY-SA 2.0 UK, via Wikimedia Commons

Week 34 – PLCO

“Mortality Results from a Randomized Prostate-Cancer Screening Trial”

by the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial project team

N Engl J Med. 2009 Mar 26;360(13):1310-9. [free full text]

The use of prostate-specific-antigen (PSA) testing to screen for prostate cancer has been a contentious subject for decades. Prior to the 2009 PLCO trial, there were no high-quality prospective studies of the potential benefit of PSA testing.

The trial enrolled men ages 55-74 (excluded if hx prostate, lung, or colorectal cancer, current cancer treatment, or > 1 PSA test in the past 3 years). Patients were randomized to annual PSA testing for 6 years with annual digital rectal exam (DRE) for 4 years or to usual care. The primary outcome was the prostate-cancer-attributable death rate, and the secondary outcome was the incidence of prostate cancer.

38,343 patients were randomized to the screening group, and 38,350 were randomized to the usual-care group. Baseline characteristics were similar in both groups. Median follow-up duration was 11.5 years. Patients in the screening group were 85% compliant with PSA testing and 86% compliant with DRE. In the usual-care group, 40% of patients received a PSA test within the first year, and 52% received a PSA test by the sixth year. Cumulative DRE rates in the usual-care group were between 40-50%. By seven years, there was no significant difference in rates of death attributable to prostate cancer. There were 50 deaths in the screening group and only 44 in the usual-care group (rate ratio 1.13, 95% CI 0.75 – 1.70). At ten years, there were 92 and 82 deaths in the respective groups (rate ratio 1.11, 95% CI 0.83–1.50). By seven years, there was a higher rate of prostate cancer detection in the screening group. 2820 patients were diagnosed in the screening group, but only 2322 were diagnosed in the usual-care group (rate ratio 1.22, 95% CI 1.16–1.29). By ten years, there were 3452 and 2974 diagnoses in the respective groups (rate ratio 1.17, 95% CI 1.11–1.22). Treatment-related complications (e.g. infection, incontinence, impotence) were not reported in this study.

In summary, yearly PSA screening increased the prostate cancer diagnosis rate but did not impact prostate-cancer mortality when compared to the standard of care. However, there were relatively high rates of PSA testing in the usual-care group (40-50%). The authors cite this finding as a probable major contributor to the lack of mortality difference. Other factors that may have biased to a null result were prior PSA testing and advances in treatments for prostate cancer during the trial. Regarding the former, 44% of men in both groups had already had one or more PSA tests prior to study enrollment. Prior PSA testing likely contributed to selection bias.

PSA screening recommendations prior to this 2009 study:

      • American Urological Association and American Cancer Society – recommended annual PSA and DRE, starting at age 50 if normal risk and earlier in high-risk men
      • National Comprehensive Cancer Network: “a risk-based screening algorithm, including family history, race, and age”
      • 2008 USPSTF Guidelines: insufficient evidence to determine balance between risks/benefits of PSA testing in men younger than 75; recommended against screening in age 75+ (Grade I Recommendation)

The authors of this study conclude that their results “support the validity of the recent [2008] recommendations of the USPSTF, especially against screening all men over the age of 75.”

However, the conclusions of the European Randomized Study of Screening for Prostate Cancer (ERSPC), which was published concurrently with PLCO in NEJM, differed. In ERSPC, PSA was screened every 4 years. The authors found an increased rate of detection of prostate cancer, but, more importantly, they found that screening decreased prostate cancer mortality (adjusted rate ratio 0.80, 95% CI 0.65–0.98, p = 0.04; NNT 1410 men receiving 1.7 screening visits over 9 years). Like PLCO, this study did not report treatment harms that may have been associated with overly zealous diagnosis.

The USPSTF reexamined its PSA guidelines in 2012. Given the lack of mortality benefit in PLCO, the pitiful mortality benefit in ERSPC, and the assumed harm from over-diagnosis and excessive intervention in patients who would ultimately not succumb to prostate cancer, the USPSTF concluded that PSA-based screening for prostate cancer should not be offered (Grade D Recommendation).

In the following years, the pendulum has swung back partially toward screening. In May 2018, the USPSTF released new recommendations that encourage men ages 55-69 to have an informed discussion with their physician about potential benefits and harms of PSA-based screening (Grade C Recommendation). The USPSTF continues to recommend against screening in patients over 70 years old (Grade D).

Screening for prostate cancer remains a complex and controversial topic. Guidelines from the American Cancer Society, American Urological Association, and USPSTF vary, but ultimately all recommend shared decision-making. UpToDate has a nice summary of talking points culled from several sources.

Further Reading/References:
#. PLCO @ 2 Minute Medicine
#. ERSPC @ Wiki Journal Club
#. UpToDate, Screening for Prostate Cancer

Summary by Duncan F. Moore, MD

Image Credit: Otis Brawley, Public Domain, NIH National Cancer Institute Visuals Online